Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cell Mol Life Sci ; 81(1): 102, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38409522

RESUMEN

The protease ADAM17 plays an important role in inflammation and cancer and is regulated by iRhom2. Mutations in the cytosolic N-terminus of human iRhom2 cause tylosis with oesophageal cancer (TOC). In mice, partial deletion of the N-terminus results in a curly hair phenotype (cub). These pathological consequences are consistent with our findings that iRhom2 is highly expressed in keratinocytes and in oesophageal cancer. Cub and TOC are associated with hyperactivation of ADAM17-dependent EGFR signalling. However, the underlying molecular mechanisms are not understood. We have identified a non-canonical, phosphorylation-independent 14-3-3 interaction site that encompasses all known TOC mutations. Disruption of this site dysregulates ADAM17 activity. The larger cub deletion also includes the TOC site and thus also dysregulated ADAM17 activity. The cub deletion, but not the TOC mutation, also causes severe reductions in stimulated shedding, binding, and stability of ADAM17, demonstrating the presence of additional regulatory sites in the N-terminus of iRhom2. Overall, this study contrasts the TOC and cub mutations, illustrates their different molecular consequences, and reveals important key functions of the iRhom2 N-terminus in regulating ADAM17.


Asunto(s)
Proteínas Portadoras , Neoplasias Esofágicas , Queratodermia Palmoplantar , Humanos , Ratones , Animales , Fosforilación , Proteínas Portadoras/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Transducción de Señal/genética , Mutación , Neoplasias Esofágicas/genética
2.
Cell Mol Life Sci ; 80(5): 135, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37119365

RESUMEN

Several membrane-anchored signal mediators such as cytokines (e.g. TNFα) and growth factors are proteolytically shed from the cell surface by the metalloproteinase ADAM17, which, thus, has an essential role in inflammatory and developmental processes. The membrane proteins iRhom1 and iRhom2 are instrumental for the transport of ADAM17 to the cell surface and its regulation. However, the structure-function determinants of the iRhom-ADAM17 complex are poorly understood. We used AI-based modelling to gain insights into the structure-function relationship of this complex. We identified different regions in the iRhom homology domain (IRHD) that are differentially responsible for iRhom functions. We have supported the validity of the predicted structure-function determinants with several in vitro, ex vivo and in vivo approaches and demonstrated the regulatory role of the IRHD for iRhom-ADAM17 complex cohesion and forward trafficking. Overall, we provide mechanistic insights into the iRhom-ADAM17-mediated shedding event, which is at the centre of several important cytokine and growth factor pathways.


Asunto(s)
Proteínas Portadoras , Proteínas de la Membrana , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteína ADAM17/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Citocinas/metabolismo , Modelos Estructurales
3.
Cell Mol Life Sci ; 78(11): 5015-5040, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33950315

RESUMEN

Membrane-tethered signalling proteins such as TNFα and many EGF receptor ligands undergo shedding by the metalloproteinase ADAM17 to get released. The pseudoproteases iRhom1 and iRhom2 are important for the transport, maturation and activity of ADAM17. Yet, the structural and functional requirements to promote the transport of the iRhom-ADAM17 complex have not yet been thoroughly investigated. Utilising in silico and in vitro methods, we here map the conserved iRhom homology domain (IRHD) and provide first insights into its structure and function. By focusing on iRhom2, we identified different structural and functional factors within the IRHD. We found that the structural integrity of the IRHD is a key factor for ADAM17 binding. In addition, we identified a highly conserved motif within an unstructured region of the IRHD, that, when mutated, restricts the transport of the iRhom-ADAM17 complex through the secretory pathway in in vitro, ex vivo and in vivo systems and also increases the half-life of iRhom2 and ADAM17. Furthermore, the disruption of this IRHD motif was also reflected by changes in the yet undescribed interaction profile of iRhom2 with proteins involved in intracellular vesicle transport. Overall, we provide the first insights into the forward trafficking of iRhoms which is critical for TNFα and EGF receptor signalling.


Asunto(s)
Proteína ADAM17/metabolismo , Proteínas Portadoras/metabolismo , Familia de Proteínas EGF/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína ADAM17/química , Secuencias de Aminoácidos , Animales , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Línea Celular , Semivida , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutagénesis , Unión Proteica , Dominios Proteicos , Transporte de Proteínas , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda