Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Biochem Biophys Res Commun ; 531(1): 75-83, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32586625

RESUMEN

G-quadrupex is now known to play crucial roles in various biological reactions. However, direct evidence for its presence in cells has been limited, due to the lack of versatile and non-biased methodology. We use Rif1 binding sites on the fission yeast genome, which has been shown to adopt G4 structures, as a model to prove that Rif1 BS indeed adopt G4 structure in cells. We take advantage of the presence of a single-stranded loop in the G4 structure. Rif1BS is unique in that they contain unusually long loop sequences, and we replace them with a 18 bp I-SceI restriction site. We show in vitro that I-SceI in the loop is not cleaved when G4 is formed on duplex Rif1BS DNA, but is cleaved when G4 is not formed due to a mutation in the G-tracts. This is observed both heat-induced and transcription-induced G4 structure, and gives proof of evidence for this procedure. We apply this strategy for detection of a G4 structure at the same Rif1BS in fission yeast cells. We present evidence that in vivo cleavage of I-SceI can be a measure for the presence of G4 at the target sequence in cells as well. The method described here gives a platform strategy for genome-wide analyses of cellular G4 and their dynamic formation and disruption.


Asunto(s)
G-Cuádruplex , Genoma Fúngico , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Proteínas de Unión a Telómeros/metabolismo , Sitios de Unión , Desnaturalización de Ácido Nucleico , Schizosaccharomyces/metabolismo
2.
J Biol Chem ; 293(44): 17033-17049, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30217821

RESUMEN

G-quadruplexes (G4s) are four-stranded DNA structures comprising stacks of four guanines, are prevalent in genomes, and have diverse biological functions in various chromosomal structures. A conserved protein, Rap1-interacting factor 1 (Rif1) from fission yeast (Schizosaccharomyces pombe), binds to Rif1-binding sequence (Rif1BS) and regulates DNA replication timing. Rif1BS is characterized by the presence of multiple G-tracts, often on both strands, and their unusual spacing. Although previous studies have suggested generation of G4-like structures on duplex Rif1BS, its precise molecular architecture remains unknown. Using gel-shift DNA binding assays and DNA footprinting with various nuclease probes, we show here that both of the Rif1BS strands adopt specific higher-order structures upon heat denaturation. We observed that the structure generated on the G-strand is consistent with a G4 having unusually long loop segments and that the structure on the complementary C-strand does not have an intercalated motif (i-motif). Instead, we found that the formation of the C-strand structure depends on the G4 formation on the G-strand. Thus, the higher-order structure generated at Rif1BS involved both DNA strands, and in some cases, G4s may form on both of these strands. The presence of multiple G-tracts permitted the formation of alternative structures when some G-tracts were mutated or disrupted by deazaguanine replacement, indicating the robust nature of DNA higher-order structures generated at Rif1BS. Our results provide general insights into DNA structures generated at G4-forming sequences on duplex DNA.


Asunto(s)
ADN de Hongos/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Unión a Telómeros/química , Secuencia de Bases , Sitios de Unión , Huella de ADN , Replicación del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , G-Cuádruplex , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Schizosaccharomyces/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
3.
Mol Cell ; 40(4): 606-18, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21095590

RESUMEN

When inappropriate DNA structures arise, they are sensed by DNA structure-dependent checkpoint pathways and subsequently repaired. Recruitment of checkpoint proteins to such structures precedes recruitment of proteins involved in DNA metabolism. Thus, checkpoints can regulate DNA metabolism. We show that fission yeast Rad9, a 9-1-1 heterotrimeric checkpoint-clamp component, is phosphorylated by Hsk1(Cdc7), the Schizosaccharomyces pombe Dbf4-dependent kinase (DDK) homolog, in response to replication-induced DNA damage. Phosphorylation of Rad9 disrupts its interaction with replication protein A (RPA) and is dependent on 9-1-1 chromatin loading, the Rad9-associated protein Rad4/Cut5(TopBP1), and prior phosphorylation by Rad3(ATR). rad9 mutants defective in DDK phosphorylation show wild-type checkpoint responses but abnormal DNA repair protein foci and decreased viability after replication stress. We propose that Rad9 phosphorylation by DDK releases Rad9 from DNA damage sites to facilitate DNA repair.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Cromatina/metabolismo , Daño del ADN , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/enzimología , Secuencia de Aminoácidos , Camptotecina/farmacología , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/química , Cromatina/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Cinética , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Fosfotreonina/metabolismo , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteína de Replicación A/metabolismo , Schizosaccharomyces/efectos de los fármacos , Solubilidad/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Factores de Tiempo
4.
J Biol Chem ; 286(26): 23031-43, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21536671

RESUMEN

Cdc7 is a serine/threonine kinase conserved from yeasts to human and is known to play a key role in the regulation of initiation at each replication origin. Its catalytic function is activated via association with the activation subunit Dbf4/activator of S phase kinase (ASK). It is known that two conserved motifs of Dbf4/ASK are involved in binding to Cdc7, and both are required for maximum activation of Cdc7 kinase. Cdc7 kinases possess unique kinase insert sequences (kinase insert I-III) that are inserted at defined locations among the conserved kinase domains. However, precise mechanisms of Cdc7 kinase activation are largely unknown. We have identified two segments on Cdc7, DAM-1 (Dbf4/ASK interacting motif-1; amino acids 448-457 near the N terminus of kinase insert III) and DAM-2 (C-terminal 10-amino acid segment), that interact with motif-M and motif-C of ASK, respectively, and are essential for kinase activation by ASK. The C-terminal 143-amino acid polypeptide (432-574) containing DAM-1 and DAM-2 can interact with Dbf4/ASK. Characterization of the purified ASK-free Cdc7 and Cdc7-ASK complex shows that ATP binding of the Cdc7 catalytic subunit requires Dbf4/ASK. However, the "minimum" Cdc7, lacking the entire kinase insert II and half of kinase insert III, binds to ATP and shows autophosphorylation activity in the absence of ASK. However, ASK is still required for phosphorylation of exogenous substrates by the minimum Cdc7. These results indicate bipartite interaction between Cdc7 and Dbf4/ASK subunits facilitates ATP binding and substrate recognition by the Cdc7 kinase.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Adenosina Trifosfato/genética , Secuencias de Aminoácidos , Animales , Proteínas de Ciclo Celular/genética , Activación Enzimática/fisiología , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Noqueados , Fosforilación/fisiología , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética
5.
Nucleic Acids Res ; 38(16): 5409-18, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20421204

RESUMEN

Mcm2-7 is recruited to eukaryotic origins of DNA replication by origin recognition complex, Cdc6 and Cdt1 thereby licensing the origins. Cdc6 is essential for origin licensing during DNA replication and is readily destabilized from chromatin after Mcm2-7 loading. Here, we show that after origin licensing, deregulation of Cdc6 suppresses DNA replication in Xenopus egg extracts without the involvement of ATM/ATR-dependent checkpoint pathways. DNA replication is arrested specifically after chromatin binding of Cdc7, but before Cdk2-dependent pathways and deregulating Cdc6 after this step does not impair activation of origin firing or elongation. Detailed analyses revealed that Cdc6 deregulation leads to strong suppression of Cdc7-mediated hyperphosphorylation of Mcm4 and subsequent chromatin loading of Cdc45, Sld5 and DNA polymerase α. Mcm2 phosphorylation is also repressed although to a lesser extent. Remarkably, Cdc6 itself does not directly inhibit Cdc7 kinase activity towards Mcm2-4-6-7 in purified systems, rather modulates Mcm2-7 phosphorylation on chromatin context. Taken together, we propose that Cdc6 on chromatin acts as a modulator of Cdc7-mediated phosphorylation of Mcm2-7, and thus destabilization of Cdc6 from chromatin after licensing is a key event ensuring proper transition to the initiation of DNA replication.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas Cromosómicas no Histona/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas de Xenopus/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Cromatina/enzimología , Quinasa 2 Dependiente de la Ciclina/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Ratones , Componente 2 del Complejo de Mantenimiento de Minicromosoma , Componente 4 del Complejo de Mantenimiento de Minicromosoma , Componente 6 del Complejo de Mantenimiento de Minicromosoma , Componente 7 del Complejo de Mantenimiento de Minicromosoma , Proteínas Nucleares/metabolismo , Complejo de Reconocimiento del Origen/metabolismo , Óvulo/enzimología , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Xenopus laevis
6.
Mol Cell Biol ; 39(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30510058

RESUMEN

Rif1 is a key factor for spatiotemporal regulation of DNA replication. Rif1 suppresses origin firing in the mid-late replication domains by generating replication-suppressive chromatin architecture and by recruiting a protein phosphatase. In fission yeast, the function of Hsk1, a kinase important for origin firing, can be bypassed by rif1Δ due to the loss of origin suppression. Rif1 specifically binds to G-quadruplex (G4) in vitro Here, we show both conserved N-terminal HEAT repeats and C-terminal nonconserved segments are required for origin suppression. The N-terminal 444 amino acids and the C-terminal 229 amino acids can each mediate specific G4 binding, although high-affinity G4 binding requires the presence of both N- and C-terminal segments. The C-terminal 91 amino acids, although not able to bind to G4, can form a multimer. Furthermore, genetic screening led to identification of two classes of rif1 point mutations that can bypass Hsk1, one that fails to bind to chromatin and one that binds to chromatin. These results illustrate functional domains of Rif1 and indicate importance of both the N-terminal HEAT repeat segment and C-terminal G4 binding/oligomerization domain as well as other functionally unassigned segments of Rif1 in regulation of origin firing.


Asunto(s)
G-Cuádruplex , Origen de Réplica , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Secuencias Repetidas Terminales
7.
Sci Rep ; 9(1): 8618, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31197198

RESUMEN

Rif1 is a conserved protein regulating replication timing and binds preferentially to the vicinity of late-firing/dormant origins in fission yeast. The Rif1 binding sites on the fission yeast genome have an intrinsic potential to generate G-quadruplex (G4) structures to which purified Rif1 preferentially binds. We previously proposed that Rif1 generates chromatin architecture that may determine replication timing by facilitating the chromatin loop formation. Here, we conducted detailed biochemical analyses on Rif1 and its G4 binding. Rif1 prefers sequences containing long stretches of guanines and binds preferentially to the multimeric G4 of parallel or hybrid/mix topology. Rif1 forms oligomers and binds simultaneously to multiple G4. We present a model on how Rif1 may facilitate the formation of chromatin architecture through its G4 binding and oligomerization properties.


Asunto(s)
G-Cuádruplex , Multimerización de Proteína , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Secuencia de Bases , Cromatina/metabolismo , ADN de Hongos/metabolismo , Modelos Biológicos , Oligonucleótidos/metabolismo , Péptidos/metabolismo , Unión Proteica , Proteínas de Schizosaccharomyces pombe/aislamiento & purificación , Telómero/metabolismo , Proteínas de Unión a Telómeros/aislamiento & purificación
8.
Mol Cell Biol ; 37(7)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28069740

RESUMEN

Mrc1 is a conserved checkpoint mediator protein that transduces the replication stress signal to the downstream effector kinase. The loss of mrc1 checkpoint activity results in the aberrant activation of late/dormant origins in the presence of hydroxyurea. Mrc1 was also suggested to regulate orders of early origin firing in a checkpoint-independent manner, but its mechanism was unknown. Here we identify HBS (Hsk1 bypass segment) on Mrc1. An ΔHBS mutant does not activate late/dormant origin firing in the presence of hydroxyurea but causes the precocious and enhanced activation of weak early-firing origins during normal S-phase progression and bypasses the requirement for Hsk1 for growth. This may be caused by the disruption of intramolecular binding between HBS and NTHBS (N-terminal target of HBS). Hsk1 binds to Mrc1 through HBS and phosphorylates a segment adjacent to NTHBS, disrupting the intramolecular interaction. We propose that Mrc1 exerts a "brake" on initiation (through intramolecular interactions) and that this brake can be released (upon the loss of intramolecular interactions) by either the Hsk1-mediated phosphorylation of Mrc1 or the deletion of HBS (or a phosphomimic mutation of putative Hsk1 target serine/threonine), which can bypass the function of Hsk1 for growth. The brake mechanism may explain the checkpoint-independent regulation of early origin firing in fission yeast.


Asunto(s)
Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Origen de Réplica , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Secuencia de Aminoácidos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Hidroxiurea/farmacología , Modelos Biológicos , Mutación/genética , Péptidos/farmacología , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Origen de Réplica/efectos de los fármacos , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Transducción de Señal/efectos de los fármacos
9.
Cell Cycle ; 14(1): 74-85, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25602519

RESUMEN

Chromatin Assembly Factor I (CAF-I) plays a key role in the replication-coupled assembly of nucleosomes. It is expected that its function is linked to the regulation of the cell cycle, but little detail is available. Current models suggest that CAF-I is recruited to replication forks and to chromatin via an interaction between its Cac1p subunit and the replication sliding clamp, PCNA, and that this interaction is stimulated by the kinase CDC7. Here we show that another kinase, CDC28, phosphorylates Cac1p on serines 94 and 515 in early S phase and regulates its association with chromatin, but not its association with PCNA. Mutations in the Cac1p-phosphorylation sites of CDC28 but not of CDC7 substantially reduce the in vivo phosphorylation of Cac1p. However, mutations in the putative CDC7 target sites on Cac1p reduce its stability. The association of CAF-I with chromatin is impaired in a cdc28-1 mutant and to a lesser extent in a cdc7-1 mutant. In addition, mutations in the Cac1p-phosphorylation sites by both CDC28 and CDC7 reduce gene silencing at the telomeres. We propose that this phosphorylation represents a regulatory step in the recruitment of CAF-I to chromatin in early S phase that is distinct from the association of CAF-I with PCNA. Hence, we implicate CDC28 in the regulation of chromatin reassembly during DNA replication. These findings provide novel mechanistic insights on the links between cell-cycle regulation, DNA replication and chromatin reassembly.


Asunto(s)
Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Cromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Factor 1 de Ensamblaje de la Cromatina/química , Factor 1 de Ensamblaje de la Cromatina/genética , Ensamble y Desensamble de Cromatina , Replicación del ADN , Silenciador del Gen , Datos de Secuencia Molecular , Mutación , Fosforilación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Telómero/genética , Telómero/metabolismo
10.
Nat Struct Mol Biol ; 22(11): 889-97, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26436827

RESUMEN

Rif1 regulates replication timing and repair of double-strand DNA breaks. Using a chromatin immunoprecipitation-sequencing method, we identified 35 high-affinity Rif1-binding sites in fission yeast chromosomes. Binding sites tended to be located near dormant origins and to contain at least two copies of a conserved motif, CNWWGTGGGGG. Base substitution within these motifs resulted in complete loss of Rif1 binding and in activation of late-firing or dormant origins located up to 50 kb away. We show that Rif1-binding sites adopt G quadruplex-like structures in vitro, in a manner dependent on the conserved sequence and on other G tracts, and that purified Rif1 preferentially binds to this structure. These results suggest that Rif1 recognizes and binds G quadruplex-like structures at selected intergenic regions, thus generating local chromatin structures that may exert long-range suppressive effects on origin firing.


Asunto(s)
Replicación del ADN , G-Cuádruplex , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/fisiología , Proteínas de Unión a Telómeros/metabolismo , Sitios de Unión , ADN de Hongos/química , ADN de Hongos/genética , ADN de Hongos/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Análisis de Secuencia de ADN
11.
PLoS One ; 7(5): e36372, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22574151

RESUMEN

BACKGROUND: Depletion of replication factors often causes cell death in cancer cells. Depletion of Cdc7, a kinase essential for initiation of DNA replication, induces cancer cell death regardless of its p53 status, but the precise pathways of cell death induction have not been characterized. METHODOLOGY/PRINCIPAL FINDINGS: We have used the recently-developed cell cycle indicator, Fucci, to precisely characterize the cell death process induced by Cdc7 depletion. We have also generated and utilized similar fluorescent cell cycle indicators using fusion with other cell cycle regulators to analyze modes of cell death in live cells in both p53-positive and -negative backgrounds. We show that distinct cell-cycle responses are induced in p53-positive and -negative cells by Cdc7 depletion. p53-negative cells predominantly arrest temporally in G2-phase, accumulating CyclinB1 and other mitotic regulators. Prolonged arrest at G2-phase and abrupt entry into aberrant M-phase in the presence of accumulated CyclinB1 are followed by cell death at the post-mitotic state. Abrogation of cytoplasmic CyclinB1 accumulation partially decreases cell death. The ATR-MK2 pathway is responsible for sequestration of CyclinB1 with 14-3-3σ protein. In contrast, p53-positive cancer cells do not accumulate CyclinB1, but appear to die mostly through entry into aberrant S-phase after Cdc7 depletion. The combination of Cdc7 inhibition with known anti-cancer agents significantly stimulates cell death effects in cancer cells in a genotype-dependent manner, providing a strategic basis for future combination therapies. CONCLUSIONS: Our results show that the use of Fucci, and similar fluorescent cell cycle indicators, offers a convenient assay system with which to identify cell cycle events associated with cancer cell death. They also indicate genotype-specific cell death modes induced by deficient initiation of DNA replication in cancer cells and its potential exploitation for development of efficient cancer therapies.


Asunto(s)
Proteínas de Ciclo Celular/deficiencia , Replicación del ADN , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas 14-3-3/metabolismo , Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Línea Celular Tumoral , Ciclina B1/metabolismo , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Replicación del ADN/efectos de los fármacos , Replicación del ADN/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Exonucleasas/metabolismo , Exorribonucleasas , Fase G2/efectos de los fármacos , Fase G2/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/genética , Proteína p53 Supresora de Tumor/metabolismo
12.
Mol Biol Cell ; 23(10): 1943-54, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22456510

RESUMEN

The E3 ubiquitin ligase Rad18 chaperones DNA polymerase η (Polη) to sites of UV-induced DNA damage and monoubiquitinates proliferating cell nuclear antigen (PCNA), facilitating engagement of Polη with stalled replication forks and promoting translesion synthesis (TLS). It is unclear how Rad18 activities are coordinated with other elements of the DNA damage response. We show here that Ser-409 residing in the Polη-binding motif of Rad18 is phosphorylated in a checkpoint kinase 1-dependent manner in genotoxin-treated cells. Recombinant Rad18 was phosphorylated specifically at S409 by c-Jun N-terminal kinase (JNK) in vitro. In UV-treated cells, Rad18 S409 phosphorylation was inhibited by a pharmacological JNK inhibitor. Conversely, ectopic expression of JNK and its upstream kinase mitogen-activated protein kinase kinase 4 led to DNA damage-independent Rad18 S409 phosphorylation. These results identify Rad18 as a novel JNK substrate. A Rad18 mutant harboring a Ser → Ala substitution at S409 was compromised for Polη association and did not redistribute Polη to nuclear foci or promote Polη-PCNA interaction efficiently relative to wild-type Rad18. Rad18 S409A also failed to fully complement the UV sensitivity of Rad18-depleted cells. Taken together, these results show that Rad18 phosphorylation by JNK represents a novel mechanism for promoting TLS and DNA damage tolerance.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Procesamiento Proteico-Postraduccional , Secuencias de Aminoácidos , Línea Celular Tumoral , Daño del ADN , Proteínas de Unión al ADN/química , Humanos , Datos de Secuencia Molecular , Fosforilación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Serina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas
13.
J Cell Biol ; 191(5): 953-66, 2010 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-21098111

RESUMEN

The E3 ubiquitin ligase Rad18 guides DNA Polymerase eta (Polη) to sites of replication fork stalling and mono-ubiquitinates proliferating cell nuclear antigen (PCNA) to facilitate binding of Y family trans-lesion synthesis (TLS) DNA polymerases during TLS. However, it is unclear exactly how Rad18 is regulated in response to DNA damage and how Rad18 activity is coordinated with progression through different phases of the cell cycle. Here we identify Rad18 as a novel substrate of the essential protein kinase Cdc7 (also termed Dbf4/Drf1-dependent Cdc7 kinase [DDK]). A serine cluster in the Polη-binding motif of Rad 18 is phosphorylated by DDK. Efficient association of Rad18 with Polη is dependent on DDK and is necessary for redistribution of Polη to sites of replication fork stalling. This is the first demonstration of Rad18 regulation by direct phosphorylation and provides a novel mechanism for integration of S phase progression with postreplication DNA repair to maintain genome stability.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Células Cultivadas , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Humanos , Microscopía Fluorescente , Fosforilación , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S , Transfección , Ubiquitina-Proteína Ligasas
14.
Cell Cycle ; 9(23): 4627-37, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21099360

RESUMEN

In fission yeast, replication fork arrest activates the replication checkpoint effector kinase Cds1(Chk2/Rad53) through the Rad3(ATR/Mec1)-Mrc1(Claspin) pathway. Hsk1, the Cdc7 homologue of fission yeast required for efficient initiation of DNA replication, is also required for Cds1 activation. Hsk1 kinase activity is required for induction and maintenance of Mrc1 hyperphosphorylation, which is induced by replication fork block and mediated by Rad3. Rad3 kinase activity does not change in an hsk1 temperature-sensitive mutant, and Hsk1 kinase activity is not affected by rad3 mutation. Hsk1 kinase vigorously phosphorylates Mrc1 in vitro, predominantly at non-SQ/TQ sites, but this phosphorylation does not seem to affect the Rad3 action on Mrc1. Interestingly, the replication stress-induced activation of Cds1 and hyperphosphorylation of Mrc1 is almost completely abrogated in an initiation-defective mutant of cdc45, but not in an mcm2 or polε mutant. The results suggest that Hsk1-mediated loading of Cdc45 onto replication origins may play important roles in replication stress-induced checkpoint.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2 , Replicación del ADN , Fosforilación , Proteínas Quinasas/metabolismo , Origen de Réplica , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/genética , Estrés Fisiológico
15.
J Biol Chem ; 283(28): 19211-8, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18442972

RESUMEN

Cdc7 is a serine-threonine kinase that regulates initiation and progression of DNA replication. The activity of purified Cdc7 kinase is significantly stimulated by polyamines such as spermine or spermidine. Positively charged polymers of lysine or arginine also stimulate its kinase activity, whereas the negatively charged substances such as polyglutamate or nucleic acids significantly inhibit the kinase activity. Spermine affects both the K(m) and V(max) of Cdc7 kinase for a minichromosome maintenance (MCM) substrate. We also found that histones, lysine- and arginine-rich basic proteins, can stimulate Cdc7 kinase activity, and a MCM complex in association with histone is a more efficient substrate of Cdc7 than the free MCM complex. These results identify potential cellular inhibitors and stimulators of Cdc7 kinase and suggest that Cdc7 may be another target of cellular polyamines and that histones may stimulate Cdc7-mediated phosphorylation of chromatin-bound substrates. Ectopic expression of an antizyme, known to reduce the cellular polyamine levels, resulted in reduction of Cdc7-mediated phosphorylation of MCM4 protein, suggesting physiological roles of polyamines in regulation of Cdc7 kinase activity in the cells.


Asunto(s)
Poliaminas Biogénicas/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Activadores de Enzimas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Poliaminas Biogénicas/química , Poliaminas Biogénicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Cromatina/metabolismo , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Activación Enzimática/efectos de los fármacos , Activadores de Enzimas/química , Activadores de Enzimas/metabolismo , Histonas/metabolismo , Humanos , Componente 4 del Complejo de Mantenimiento de Minicromosoma , Complejos Multienzimáticos/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
16.
Genes Dev ; 22(3): 398-410, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18245451

RESUMEN

Meiosis ensures genetic diversification of gametes and sexual reproduction. For successful meiosis, multiple events such as DNA replication, recombination, and chromosome segregation must occur coordinately in a strict regulated order. We investigated the meiotic roles of Cdc7 kinase in the initiation of meiotic recombination, namely, DNA double-strand breaks (DSBs) mediated by Spo11 and other coactivating proteins. Genetic analysis using bob1-1 cdc7Delta reveals that Cdc7 is essential for meiotic DSBs and meiosis I progression. We also demonstrate that the N-terminal region of Mer2, a Spo11 ancillary protein required for DSB formation and phosphorylated by cyclin-dependent kinase (CDK), contains two types of Cdc7-dependent phosphorylation sites near the CDK site (Ser30): One (Ser29) is essential for meiotic DSB formation, and the others exhibit a cumulative effect to facilitate DSB formation. Importantly, mutations on these sites confer severe defects in DSB formation even when the CDK phosphorylation is present at Ser30. Diploids of cdc7Delta display defects in the chromatin binding of not only Spo11 but also Rec114 and Mei4, other meiotic coactivators that may assist Spo11 binding to DSB hot spots. We thus propose that Cdc7, in concert with CDK, regulates Spo11 loading to DSB sites via Mer2 phosphorylation.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Roturas del ADN de Doble Cadena , Meiosis/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Secuencia de Aminoácidos , Replicación del ADN/fisiología , ADN-Topoisomerasas de Tipo II/metabolismo , Endodesoxirribonucleasas , Datos de Secuencia Molecular , Fosforilación , Recombinación Genética/genética , Recombinación Genética/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
J Biol Chem ; 281(51): 39249-61, 2006 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-17046832

RESUMEN

Cdc7 kinase, conserved from yeasts to human, plays important roles in DNA replication. However, the mechanisms by which it stimulates initiation of DNA replication remain largely unclear. We have analyzed phosphorylation of MCM subunits during cell cycle by examining mobility shift on SDS-PAGE. MCM4 on the chromatin undergoes specific phosphorylation during S phase. Cdc7 phosphorylates MCM4 in the MCM complexes as well as the MCM4 N-terminal polypeptide. Experiments with phospho-amino acid-specific antibodies indicate that the S phase-specific mobility shift is due to the phosphorylation at specific N-terminal (S/T)(S/T)P residues of the MCM4 protein. These specific phosphorylation events are not observed in mouse ES cells deficient in Cdc7 or are reduced in the cells treated with siRNA specific to Cdc7, suggesting that they are mediated by Cdc7 kinase. The N-terminal phosphorylation of MCM4 stimulates association of Cdc45 with the chromatin, suggesting that it may be an important phosphorylation event by Cdc7 for activation of replication origins. Deletion of the N-terminal non-conserved 150 amino acids of MCM4 results in growth inhibition, and addition of amino acids carrying putative Cdc7 target sequences partially restores the growth. Furthermore, combination of MCM4 N-terminal deletion with alanine substitution and deletion of the N-terminal segments of MCM2 and MCM6, respectively, which contain clusters of serine/threonine and are also likely targets of Cdc7, led to an apparent nonviable phenotype. These results are consistent with the notion that the N-terminal phosphorylation of MCM2, MCM4, and MCM6 may play functionally redundant but essential roles in initiation of DNA replication.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , ADN Helicasas/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas Nucleares/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/química , Cromatina/química , ADN Helicasas/química , Proteínas de Unión al ADN/química , Humanos , Ratones , Componente 4 del Complejo de Mantenimiento de Minicromosoma , Datos de Secuencia Molecular , Proteínas Nucleares/química , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda