Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biomacromolecules ; 24(11): 4880-4889, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37796043

RESUMEN

This study aims to design an anionic, thiolated cellulose derivative and to evaluate its mucoadhesive and permeation-enhancing properties utilizing enoxaparin as a model drug. 2-Mercaptosuccinic acid-modified cellulose (cellulose-mercaptosuccinate) was synthesized by the reaction of cellulose with S-acetylmercaptosuccinic anhydride. The chemical structure of the target compound was confirmed by FTIR and 1H NMR spectroscopy. The thiol content was determined by Ellman's test. The conjugate exhibited 215.5 ± 25 µmol/g of thiol groups and 84 ± 16 µmol/g of disulfide bonds. Because of thiolation, mucoadhesion on porcine intestinal mucosa was 9.6-fold enhanced. The apparent permeability (Papp) of the model dye Lucifer yellow was up to 2.2-fold improved by 0.5% cellulose-mercaptosuccinate on a Caco-2 cell monolayer. Enoxaparin permeation through rat intestinal mucosa increased 2.4-fold in the presence of 0.5% cellulose-mercaptosuccinate compared with the drug in buffer only. In vivo studies in rats showed an oral bioavailability of 8.98% using cellulose-mercaptosuccinate, which was 12.5-fold higher than that of the aqueous solution of the drug. Results of this study show that the modification of cellulose with 2-mercaptosuccinic acid provides mucoadhesive and permeation-enhancing properties, making this thiolated polymer an attractive excipient for oral drug delivery.


Asunto(s)
Enoxaparina , Polímeros , Humanos , Ratas , Animales , Porcinos , Polímeros/farmacología , Polímeros/química , Células CACO-2 , Celulosa/química , Sistemas de Liberación de Medicamentos/métodos , Compuestos de Sulfhidrilo/química , Preparaciones Farmacéuticas , Mucosa Intestinal
2.
Beilstein J Org Chem ; 13: 1310-1315, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28781696

RESUMEN

The aqueous reversible addition fragmentation chain-transfer (RAFT) copolymerization of isoprene and bulky comonomers, an acrylate and an acrylamide in the presence of methylated ß-cyclodextrin was employed for the first time to synthesize block-copolyrotaxanes. RAFT polymerizations started from a symmetrical bifunctional trithiocarbonate and gave rise to triblock-copolymers where the outer polyacrylate/polyacrylamide blocks act as stoppers for the cyclodextrin rings threaded onto the inner polyisoprene block. Statistical copolyrotaxanes were synthesized by RAFT polymerization as well. RAFT polymerization conditions allow control of the composition as well as the sequence of the constituents of the polymer backbone which further effects the CD content and the aqueous solubility of the polyrotaxane.

3.
Macromol Rapid Commun ; 37(1): 67-72, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26484618

RESUMEN

Synthesis of a cyclodextrin (CD) polyrotaxane is achieved for the first time by simultaneous free radical polymerization of isoprene, threading by CD, and stoppering by copolymerization of styrene. This reaction is performed in an eco-friendly manner in an aqueous medium similar to classical emulsion polymerization. Threaded CD rings of the polyrotaxane are cross-linked by hexamethylene diisocyanate, leading to highly elastic slide-ring gels.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38289467

RESUMEN

The aim of this study was to design surfactants based on histidine (His) for hydrophobic ion-pairing and evaluate their safety and efficacy. Lauryl, palmitoyl and oleyl alcohol, as well as 2-hexyl-1-decanol were converted into surfactants with histidine as head-group via esterification. The synthesized His-surfactants were characterized regarding pKa, critical micellar concentration (CMC), biodegradability, toxicity on Caco-2 cells, and ability to provide endosomal escape. Furthermore, the suitability of these agents to be employed as counterions in hydrophobic ion pairing was evaluated. Chemical structures were confirmed by 1H-NMR, FT-IR, and MS. The synthesized surfactants showed pKa values ranging from 4.9 to 6.0 and CMC values in the range of 0.3 to 7.0 mM. Their biodegradability was proven by enzymatic cleavage within 24 h. Below the CMC, His-surfactants did not show cytotoxic effects on Caco-2 cells (cell viability > 80%). All His-surfactants showed the ability to provide endosomal escape in a pH-dependent manner in the range of 5.2 to 6.8. Complexes formed between His-surfactants and heparin or plasmid DNA (pDNA) via hydrophobic ion pairing showed at least 100-fold higher lipophilicity than the correspondent model drugs. According to these results, His-surfactants might be a promising safe tool for delivering hydrophilic macromolecular drugs and nucleic acids.

5.
Int J Pharm ; 656: 124075, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38599445

RESUMEN

AIM: This study aims to design chemically crosslinked thiolated cyclodextrin-based hydrogels and to evaluate their mucoadhesive properties via mucosal residence time studies on porcine small intestinal mucosa and on porcine buccal mucosa. METHODS: Free thiol groups of heptakis(6-deoxy-6-thio)-ß-cyclodextrin (ß-CD-SH) were S-protected with 2-mercaptoethanesulfonic acid (MESNA) followed by crosslinking with citric acid. Cytotoxicity was assessed by hemolysis as well as resazurin assay. Hydrogels were characterized by their rheological and mucoadhesive properties. Ritonavir was employed as model drug for in vitro release studies from these hydrogels. RESULTS: The structure of S-protected ß-CD-SH was confirmed by IR and 1H NMR spectroscopy. Degree of thiolation was 390 ± 7 µmol/g. Hydrogels based on native ß-CD showed hemolysis of 12.5 ± 2.5 % and 13.6 ± 2.7 % within 1 and 3 h, whereas hemolysis of just 3.5 ± 2.8 % and 3.9 ± 3.0 % was observed for the S-protected thiolated CD hydrogels, respectively. Both native and S-protected thiolated hydrogels showed minor cytotoxicity on Caco-2 cells. Rheological investigations of S-protected thiolated ß-CD-based hydrogel (16.2 % m/v) showed an up to 13-fold increase in viscosity in contrast to the corresponding native ß-CD-based hydrogel. Mucosal residence time studies showed that thiolated ß-CD-based hydrogel is removed to a 16.6- and 2.4-fold lower extent from porcine small intestinal mucosa and porcine buccal mucosa in comparision to the native ß-CD-based hydrogel, respectively. Furthermore, a sustained release of ritonavir from S-protected thiolated ß-CD-based hydrogels was observed. CONCLUSION: Because of their comparatively high mucoadhesive and release-controlling properties, S-protected thiolated ß-CD-based hydrogels might be promising systems for mucosal drug delivery.


Asunto(s)
Hidrogeles , Mucosa Bucal , Compuestos de Sulfhidrilo , beta-Ciclodextrinas , Hidrogeles/química , Animales , Humanos , Células CACO-2 , Porcinos , Compuestos de Sulfhidrilo/química , Mucosa Bucal/metabolismo , beta-Ciclodextrinas/química , Mucosa Intestinal/metabolismo , Reología , Hemólisis/efectos de los fármacos , Adhesividad , Liberación de Fármacos , Polímeros/química , Supervivencia Celular/efectos de los fármacos , Intestino Delgado/metabolismo
6.
Carbohydr Polym ; 327: 121648, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171673

RESUMEN

Overcoming P-glycoprotein (P-gp)-mediated efflux poses a significant challenge for the pharmaceutical industry. This study investigates the potential of thiolated ß-cyclodextrins (ß-CD-SHs) as inhibitors of P-gp-mediated efflux in Caco-2 cells. Through a series of transport assays, intracellular accumulation, and efflux of the P-gp substrates Rhodamine 123 (Rh123) and Calcein-AM with and without co-administration of ß-CD-SHs were assessed. The results revealed that the cellular uptake of Rh123 and Calcein-AM were enhanced up to 7- and 3-fold, compared to the control, respectively. In efflux studies an up to 2.5-fold reduction of the Rh123 efflux was reached compared the control, indicating a substantial decrease of Rh123 efflux by ß-CD-SHs. Furthermore, it was observed that ß-CD-SHs led to a decrease in the reactivity of fluorescence-labeled anti-P-gp, suggesting additional effects on the conformation of P-gp. Overall, this study demonstrates the potential of ß-CD-SHs as effective modulator of P-gp-mediated drug efflux in Caco-2 cells.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Ciclodextrinas , Humanos , Células CACO-2 , Ciclodextrinas/farmacología , Rodamina 123
7.
ACS Omega ; 9(5): 5819-5828, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38343993

RESUMEN

This study aimed at designing an S-protected thiolated ß-cyclodextrin (ß-CD) exhibiting enhanced mucoadhesive properties. The native ß-CD was thiolated with phosphorus pentasulfide resulting in a thiolated ß-CD (ß-CD-SH) and subsequently S-protected with 2-mercaptoethanesulfonate (MESNA) to form ß-CD-SS-MESNA. The structure of the novel excipient was confirmed by 1H NMR and Fourier-transform infrared spectroscopy. The sulfhydryl content of ß-CD-SH, determined by Ellman's test, was 2281.00 ± 147 µmol/g, and it was decreased to 45.93 ± 19.40 µmol/g by S-protection. Due to thiolation and S-protection, the viscosity of the mixture of mucus with ß-CD-SH and ß-CD-SS-MESNA increased 1.8 and 4.1-fold, compared to native ß-CD, respectively. The unprotected ß-CD-SH diffused to a lesser extent into the mucus than native ß-CD, while S-protected ß-CD-SS-MESNA showed the highest mucodiffusion among the applied CDs. A 1.5- and 3.0-fold higher cellular uptake of ß-CD-SH and ß-CD-SS-MESNA, compared to the native one, was established on Caco-2 cell line by flow cytometry, respectively, causing slightly decreased cell viability. On account of the enhanced mucoadhesion, this higher cellular uptake does not affect the application potential of ß-CD-SS-MESNA as an oral drug delivery system since the carrier remains in the mucus and does not reach the underlying epithelial layer. According to these results, the S-protection of ß-CD-SH with MESNA promotes improved mucodiffusion, strong mucoadhesion, and prolonged mucosal residence time.

8.
Eur J Pharm Sci ; 196: 106761, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38580169

RESUMEN

Inspired by nature, tissue engineering aims to employ intricate mechanisms for advanced clinical interventions, unlocking inherent biological potential and propelling medical breakthroughs. Therefore, medical, and pharmaceutical fields are growing interest in tissue and organ replacement, repair, and regeneration by this technology. Three primary mechanisms are currently used in tissue engineering: transplantation of cells (I), injection of growth factors (II) and cellular seeding in scaffolds (III). However, to develop scaffolds presenting highest potential, reinforcement with polymeric materials is growing interest. For instance, natural and synthetic polymers can be used. Regardless, chitosan and keratin are two biopolymers presenting great biocompatibility, biodegradability and non-antigenic properties for tissue engineering purposes offering restoration and revitalization. Therefore, combination of chitosan and keratin has been studied and results exhibit highly porous scaffolds providing optimal environment for tissue cultivation. This review aims to give an historical as well as current overview of tissue engineering, presenting mechanisms used and polymers involved in the field.

9.
Biomacromolecules ; 14(8): 2703-12, 2013 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-23739032

RESUMEN

Hemoglobin (Hb) is a promiscuous protein that not only transports oxygen, but also catalyzes several biotransformations. A novel in vitro catalytic activity of Hb is described. Bovine Hb and human erythrocytes were found to display ATRPase activity, i.e., they catalyzed the polymerization of vinyl monomers under conditions typical for atom transfer radical polymerization (ATRP). N-isopropylacrylamide (NIPAAm), poly(ethylene glycol) methyl ether acrylate (PEGA), and poly(ethylene glycol) methyl ether methacrylate (PEGMA) were polymerized using organobromine initiators and the reducing agent ascorbic acid in acidic aqueous solution. In order to avoid chain transfer from polymer radicals to Hb's cysteine residues, the accessible cysteines were blocked by a reaction with a maleimide. The formation of polymers with bromine chain ends, relatively low polydispersity indices (PDI), first order kinetics and an increase in the molecular weight of poly(PEGA) and poly(PEGMA) upon conversion indicate that control of the polymerization by Hb occurred via reversible atom transfer between the protein and the growing polymer chain. For poly(PEGA) and poly(PEGMA), the reactions proceeded with a good to moderate degree of control. Sodium dodecyl sulfate (SDS) gel electrophoresis, circular dichroism spectroscopy, and time-resolved ultraviolet-visible (UV-vis) spectroscopy revealed that the protein was stable during polymerization, and only underwent minor conformational changes. As Hb and erythrocytes are readily available, environmentally friendly, and nontoxic, their ATRPase activity is a useful tool for synthetic polymer chemistry. Moreover, this novel activity enhances the understanding of Hb's redox chemistry in the presence of organobromine compounds.


Asunto(s)
Ácido Ascórbico/química , Eritrocitos/química , Radicales Libres/química , Hemoglobinas/química , Resinas Acrílicas/química , Animales , Biocatálisis , Bovinos , Humanos , Concentración de Iones de Hidrógeno , Cinética , Oxidación-Reducción , Polietilenglicoles/química , Polimerizacion , Ácidos Polimetacrílicos/química , Polivinilos/química , Estabilidad Proteica , Sustancias Reductoras/química
10.
Carbohydr Polym ; 300: 120275, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36372469

RESUMEN

Oral delivery is one of the most advantageous routes for drug administration, but due to the short gastrointestinal (GI) residence time, the systemic uptake of poorly absorbed drugs is too low to reach the desired therapeutic effect. In order to prolong the GI residence time of orally given drugs, we synthesized per-thiolated ß-cyclodextrin (CD) as mucoadhesive drug carrier. Due to thiolation, the mucoadhesive properties of CD on porcine intestinal mucosa were increased 2-fold. In vivo studies showed 4 h after oral administration, a 19.4-fold, 2.1- fold, and 4.5-fold higher quantity of per-thiolated ß-CD vs. unmodified ß-CD in the stomach, duodenum/jejunum, and the ileum of rat model, respectively. Eight hours after oral administration, still, 60 % of per-thiolated CD, but no native CD remained in the GI tract. These results provide evidence that due to thiolation of ß-CD, GI-residence time can be essentially prolonged.


Asunto(s)
Ciclodextrinas , Portadores de Fármacos , Humanos , Porcinos , Ratas , Animales , Portadores de Fármacos/farmacología , Ciclodextrinas/farmacología , Células CACO-2 , Sistemas de Liberación de Medicamentos/métodos , Compuestos de Sulfhidrilo , Mucosa Intestinal
11.
Pharmaceutics ; 15(7)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37514179

RESUMEN

AIM: This study aims to design a novel thiolated κ-carrageenan (κ-CA-SH) and evaluate its potential as an excipient for the design of mucoadhesive drug delivery systems. METHODS: Native κ-carrageenan (κ-CA) was thiolated with phosphorous pentasulfide in sulfolane and characterized via 1H NMR, FTIR, as well as Ellman's test. Cytotoxicity was assessed via resazurin assay. In vitro release of the model drug, benzydamine hydrochloride, was determined. Tensile and mucosal residence time studies were performed on buccal and small intestinal mucosa. Mucoadhesive features were investigated via rheological studies with freshly isolated porcine mucus. RESULTS: Thiolated κ-CA (κ-CA-SH) with 1213.88 ± 52 µmol/g thiol groups showed no cytotoxicity at a concentration of 1% (m/v) and low cytotoxicity up to 2% (m/v). Benzydamine hydrochloride showed slow release in solution for both polymers. Tensile studies on buccal and intestinal mucosa showed an up to 2.7-fold and 7.7-fold enhancement in the maximum detachment force (MDF) and total work of adhesion (TWA) of κ-CA-SH vs. κ-CA, respectively. The κ-CA-SH exhibited an up to 4.4-fold improved dynamic viscosity with mucus and significantly prolonged residence time on mucosa compared to native κ-CA. CONCLUSION: Since highly thiolated κ-CA shows a slow release of positively charged active pharmaceutical ingredients and enhanced mucoadhesive properties, it might be a promising excipient for local drug delivery in the oral cavity.

12.
Eur J Pharm Sci ; 180: 106313, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36307016

RESUMEN

The aim of this study was to improve the mucoadhesive properties of hydroxyethyl cellulose (HEC) via the covalent attachment of betaine. Synthesis was carried out through esterification of HEC utilizing N-chlorobetainyl chloride. Betaine-modified HEC was characterized via FTIR and NMR analyses, ester quantification and zeta potential measurements. Enzymatic degradation and cell viability were also investigated. Moreover, rheological and mucoadhesive properties were evaluated. FTIR and NMR analyses confirmed the covalent attachment of betaine to HEC. Betaine-modified HEC contained 228.45±11.63 µmol/g ester bonds and its zeta potential was 0.37±0.19 mV. Enzymatic degradation studies showed the ability of lipase to cleave off betaine from HEC. Cytotoxicity studies demonstrated that betaine-modified HEC is up to a concentration of 0.3% not toxic. In comparison to unmodified HEC, betaine-modified HEC showed with mucus a 2.3- and 4-fold higher viscosity within 3 h and 6 h, respectively. Furthermore, betaine-modified HEC exhibited 23.5-fold higher mucoadhesive properties on porcine intestinal mucosa compared to unmodified HEC. In conclusion, betaine-modified HEC might be a useful biodegradable mucoadhesive polymer.


Asunto(s)
Compuestos de Amonio , Betaína , Humanos , Porcinos , Animales , Células CACO-2 , Celulosa/química , Polímeros/química , Ésteres
13.
Acta Biomater ; 167: 309-320, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37271247

RESUMEN

AIM: This study aims to compare the mucus permeating and mucoadhesive properties of three generations of thiolated cyclodextrins (CDs). METHODS: Free thiol groups of thiolated γ-CDs (CD-SH) were S-protected with 2-mercaptonicotinic acid (MNA), leading to a second generation of thiolated CDs (CD-SS-MNA) and with 2 kDa polyethylene glycol (PEG) bearing a terminal thiol group leading to a third generation of thiolated CDs (CD-SS-PEG). The structure of these thiolated CDs was confirmed and characterized by FT-IR, 1H NMR and colorimetric assays. Thiolated CDs were evaluated regarding viscosity, mucus diffusion, and mucoadhesion. RESULTS: The viscosity of the mixture of CD-SH, CD-SS-MNA, or CD-SS-PEG with mucus increased up to 11-, 16-, and 14.1-fold compared to unmodified CD within 3 hours, respectively. Mucus diffusion increased in the following rank order: unprotected CD-SH < CD-SS-MNA < CD-SS-PEG. The residence time of CD-SH, CD-SS-MNA, and CD-SS-PEG on porcine intestine was up to 9.6-, 12.55-, and 11.2-fold prolonged compared to native CD, respectively. CONCLUSION: According to these results, S-protection of thiolated CDs can be a promising approach to improve their mucus permeating and mucoadhesive properties. STATEMENT OF SIGNIFICANCE: Three generations of thiolated cyclodextrins (CDs) with different types of thiol ligands have been synthesized to improve mucus interaction. 1st generation of thiolated CDs was synthesized by converting hydroxyl groups into thiols by reaction with Thiourea. For 2nd generation, free thiol groups were S-protected by reaction with 2-mercaptonicotinic acid (MNA), resulting in high reactive disulfide bonds. For 3rd generation, terminally thiolated short PEG chains (2 kDa) were used for S-protection of thiolated CDs. Mucus penetrating properties were found to be increased as follows: 1st generation < 2nd generation < 3rd generation. Furthermore, mucoadhesive properties were improved in the following rank order: 1st generation < 3rd generation < 2nd generation. This study suggests that the S-protection of thiolated CDs can enhance mucus penetrating and mucoadhesive properties.


Asunto(s)
Ciclodextrinas , Humanos , Animales , Porcinos , Espectroscopía Infrarroja por Transformada de Fourier , Células CACO-2 , Compuestos de Sulfhidrilo/química , Moco , Sistemas de Liberación de Medicamentos/métodos
14.
Int J Pharm ; 635: 122719, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36791998

RESUMEN

AIM: The aim of this study was the comparison of the mucoadhesive properties of nonionic, negatively, and positively charged thiolated cyclodextrins (CDs), including α-, ß-, and γ-CDs of low and high degree of thiolation. METHODS: Native α-, ß-, and γ-CDs were thiolated with phosphorous pentasulfide in sulfolane (CD-SH) (i), via reductive amination with cysteamine after oxidative ring opening (CD-Cya) (ii), and via esterification with mercaptosuccinic acid (CD-MSA) (iii). These thiolated CDs were characterized via 1H NMR and Ellman's test. Cytotoxicity was determined via resazurin and hemolysis assay. Mucoadhesive properties were evaluated via rheological studies with freshly isolated porcine mucus, as well as residence time studies on porcine small intestinal mucosa. RESULTS: The structure of thiolated CDs was confirmed via 1H NMR. The degree of thiolation was in the range of 594-1034 µmol/g for low and 1360-3379 µmol/g for high CD-SH, whereas thiolated CD-Cya and thiolated CD-MSA exhibited a degree of thiolation of 1142-3242 µmol/g and 243-1227 µmol/g, respectively. Just cationic CDs showed cytotoxicity. Nonionic highly thiolated α-CD-SH, α-CD-Cya, and α-CD-MSA exhibited with mucus 5.6-, 15.7- and 2.8-fold improved dynamic viscosity, while improvement was 7.7-, 6.1-, and 5.4-fold for the corresponding thiolated ß-CDs and 12.3-, 15.4- and 17.8-fold for the corresponding thiolated γ-CDs compared with native CDs, respectively. A prolonged mucosal residence time following the rank order γ > ß > α was observed for all thiolated CDs, whereby γ-CD-Cya, nonionic highly thiolated ß-CD-SH and α-CD-Cya showed the highest mucoadhesive properties. CONCLUSION: A high degree of thiolation and the introduction of cationic charges are mainly responsible for high mucoadhesive properties of CDs.


Asunto(s)
Ciclodextrinas , gamma-Ciclodextrinas , Animales , Humanos , Células CACO-2 , Sistemas de Liberación de Medicamentos , Mucosa Intestinal , Compuestos de Sulfhidrilo/química , Porcinos
15.
Drug Deliv Transl Res ; 13(4): 946-965, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36575354

RESUMEN

The low aqueous solubility and subsequently slow dissolution rate, as well as the poor bioavailability of several active pharmaceutical ingredients (APIs), are major challenges in the pharmaceutical industry. In this review, the particle engineering approaches using supercritical carbon dioxide (SC CO2) as an antisolvent are critically reviewed. The different SC CO2-based antisolvent processes, such as the gas antisolvent process (GAS), supercritical antisolvent process (SAS), and a solution-enhanced dispersion system (SEDS), are described. The effect of process parameters such as temperature, pressure, solute concentration, nozzle diameter, SC CO2 flow rate, solvent type, and solution flow rate on the average particle size, particle size distribution, and particle morphology is discussed from the fundamental perspective of the SAS process. The applications of the SAS process in different formulation approaches such as solid dispersion, polymorphs, cocrystallization, inclusion complexation, and encapsulation to enhance the dissolution rate, solubility, and bioavailability are critically reviewed. This review highlights some areas where the SAS process has not been adequately explored yet. This review will be helpful to researchers working in this area or planning to explore SAS process to particle engineering approaches to tackle the challenge of low solubility and subsequently slow dissolution rate and poor bioavailability.


Asunto(s)
Dióxido de Carbono , Agua , Dióxido de Carbono/química , Solventes/química , Soluciones , Temperatura , Tamaño de la Partícula , Solubilidad
16.
J Colloid Interface Sci ; 630(Pt B): 164-178, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36327720

RESUMEN

HYPOTHESIS: Aminoglycosides are well known, cationic antimicrobial drugs. However, biofilm-based antibiotic resistance significantly limits their efficacy. Masking the polycationic character of these drugs, followed by incorporation into self-emulsifying drug delivery systems (SEDDS) can improve biofilm eradication. EXPERIMENTS: Imine derivatives were synthesized via coupling with trans-cinnamaldehyde and characterized regarding degree of substitution, logP, cytotoxicity and antimicrobial efficacy on the opportunistic human pathogens Escherichia coli, Staphylococcus aureus and Candida albicans. Imines were loaded into newly developed SEDDS formulations and the antimicrobial efficacy was assessed on these pathogens in planktonic state and after biofilm formation. FINDINGS: Successful synthesis of imine derivatives with almost entirely masked amine groups was confirmed by NMR, FT-IR, TLC and MS. Imines exhibited a marked elevation in logP value of 8 units for kanamycin and 7.7 units for tobramycin. They showed low toxicity profiles while fully preserving antimicrobial efficacy on all tested pathogens. Incorporation into SEDDS resulted in nanoemulsions, which exhibited equal antimicrobial efficacy on the model germs compared to the corresponding aminoglycosides. Moreover, the biofilm eradication assay revealed superior anti-biofilm properties of the nanoemulsions. Native aminoglycosides were largely prone to reduced microbial susceptibility due to biofilm formation, while the combination of SEDDS with iminated aminoglycosides provided overall enhanced biofilm eradication.


Asunto(s)
Aminoglicósidos , Antiinfecciosos , Humanos , Aminoglicósidos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología , Sistemas de Liberación de Medicamentos/métodos , Emulsiones/química , Iminas
17.
ACS Biomater Sci Eng ; 9(12): 6797-6804, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37996083

RESUMEN

Nanoemulsions can be tuned toward enhanced gastro-intestinal retention time by incorporating thiolated surfactants into their surface. Tailoring the chemical reactivity of the thiol headgroup has major influence on mucoadhesive features of the nanoemulsion. Two generations of thiolated surfactants were synthetically derived from PEG-40-stearate featuring either a free thiol group or an S-protected thiol group. The surfactants were characterized regarding critical micelle concentration (CMC), hemolytic activity, and cytotoxicity. Subsequently, they were incorporated into nanoemulsions and the resulting nanoemulsions were characterized regarding particle size, polydispersity index (PDI), zeta potential, and time-dependent stability. Afterward, mucosal interactions as well as mucoadhesion on porcine intestinal mucosa were investigated. Successful synthesis of Cysteine-PEG-40-stearate (CYS-PEG-40-stearate) and MNA-Cysteine-PEG-40-stearate (MNA-CYS-PEG-40-stearate) was confirmed by 1H NMR spectroscopy. Both chemical modifications led to slightly elevated CMC values while preserving low cytotoxicity and hemotoxicity. Incorporation into nanoemulsions had minor influence on overall physical particle characteristics, while interactions with mucus and mucoadhesiveness of the nanoemulsions were drastically improved resulting in the rank order PEG-40-stearate < CYS-PEG-40-stearate < MNA-CYS-PEG-40-stearate. Accordingly, thiolated surfactants, especially S-protected derivatives, are versatile tools to generate highly mucoadhesive nanoemulsions.


Asunto(s)
Cisteína , Sistemas de Liberación de Medicamentos , Animales , Porcinos , Cisteína/química , Sistemas de Liberación de Medicamentos/métodos , Tensoactivos/farmacología , Estearatos , Compuestos de Sulfhidrilo/química
18.
Carbohydr Polym ; 316: 121070, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37321712

RESUMEN

This study aimed to evaluate the effect of thiolated α-cyclodextrin (α-CD-SH) on the cellular uptake of its payload. For this purpose, α-CD was thiolated using phosphorous pentasulfide. Thiolated α-CD was characterized by FT-IR and 1H NMR spectroscopy, differential scanning calorimetry (DSC), and powder X-ray diffractometry (PXRD). Cytotoxicity of α-CD-SH was evaluated on Caco-2, HEK 293, and MC3T3 cells. Dilauryl fluorescein (DLF) and coumarin-6 (Cou) serving as surrogates for a pharmaceutical payload were incorporated in α-CD-SH, and cellular uptake was analyzed by flow cytometry and confocal microscopy. Endosomal escape was investigated by confocal microscopy and hemolysis assay. Results showed no cytotoxic effect within 3 h, while dose-dependent cytotoxicity was observed within 24 h. The cellular uptake of DLF and Cou was up to 20- and 11-fold enhanced by α-CD-SH compared to native α-CD, respectively. Furthermore, α-CD-SH provided an endosomal escape. According to these results, α-CD-SH is a promising carrier to shuttle drugs into the cytoplasm of target cells.


Asunto(s)
Portadores de Fármacos , alfa-Ciclodextrinas , Humanos , Portadores de Fármacos/toxicidad , Portadores de Fármacos/química , alfa-Ciclodextrinas/farmacología , alfa-Ciclodextrinas/química , Células CACO-2 , Espectroscopía Infrarroja por Transformada de Fourier , Células HEK293 , Solubilidad , Rastreo Diferencial de Calorimetría , Difracción de Rayos X
19.
J Control Release ; 346: 289-299, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35461970

RESUMEN

Apart from already established technologies to increase gastrointestinal transit times, including devices rapidly increasing in size once they have reached the stomach in order to retard the passage through the pylorus, formulations that float on gastric fluids and mucoadhesive drug delivery systems adhering to the gastrointestinal mucosa, there are new technologies emerging that might be game changing. They include mucus permeating nanocarriers that are able to diffuse deeply into the mucus gel layer of the gastric and intestinal mucosa remaining there for a prolonged time period (i), charge-converting nanocarriers that shift their zeta potential from negative to positive within the mucus gel layer providing strong ionic bonds with anionic mucus glycoproteins (ii) and thiolated nanocarriers and cyclodextrins form even covalent bonds with cysteine-rich subdomains of mucus glycoproteins (iii). Within this review we will provide an overview about these emerging new technologies and will critically discuss their potential and shortcomings.


Asunto(s)
Sistemas de Liberación de Medicamentos , Tránsito Gastrointestinal , Glicoproteínas , Mucosa Intestinal , Moco
20.
Acta Biomater ; 144: 54-66, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35292415

RESUMEN

Hydrophobic ion pairing is a promising strategy to raise the lipophilic character of therapeutic peptides and proteins. In past studies, docusate, an all-purpose surfactant with a dialkyl sulfosuccinate structure, showed highest potential as hydrophobic counterion. Being originally not purposed for hydrophobic ion pairing, it is likely still far away from the perfect counterion. Thus, within this study, docusate analogues with various linear and branched alkyl residues were synthesized to derive systematic insights into which hydrophobic tail is most advantageous for hydrophobic ion pairing, as well as to identify lead counterions that form complexes with superior hydrophobicity. The successful synthesis of the target compounds was confirmed by FT-IR, 1H-NMR, and 13C-NMR. In a screening with the model protein hemoglobin, monostearyl sulfosuccinate, dioleyl sulfosuccinate, and bis(isotridecyl) sulfosuccinate were identified as lead counterions. Their potential was further evaluated with the peptides and proteins vancomycin, insulin, and horseradish peroxidase. Dioleyl sulfosuccinate and bis(isotridecyl) sulfosuccinate significantly increased the hydrophobicity of the tested peptides and proteins determined as logP or lipophilicity determined as solubility in 1-octanol, respectively, in comparison to the gold standard docusate. Dioleyl sulfosuccinate provided an up to 8.3-fold higher partition coefficient and up to 26.5-fold higher solubility in 1-octanol than docusate, whereas bis(isotridecyl) sulfosuccinate resulted in an up to 6.7-fold improvement in the partition coefficient and up to 44.0-fold higher solubility in 1-octanol. The conjugation of highly lipophilic alkyl tails to the polar sulfosuccinate head group allows the design of promising counterions for hydrophobic ion pairing. STATEMENT OF SIGNIFICANCE: Hydrophobic ion pairing enables efficient incorporation of hydrophilic molecules into lipid-based formulations by forming complexes with hydrophobic counterions. Docusate, a sulfosuccinate with two branched alkyl tails, has shown highest potential as anionic hydrophobic counterion. As it was originally not purposed for hydrophobic ion pairing, its structure is likely still far away from the perfect counterion. To improve its properties, analogues of docusate with various alkyl tails were synthesized in the present study. The investigation of different alkyl residues allowed to derive systematic insights into which tail structures are most favorable for hydrophobic ion pairing. Moreover, the lead counterions dioleyl sulfosuccinate and bis(isotridecyl) sulfosuccinate bearing highly lipophilic alkyl tails provided a significant improvement in the hydrophobicity of the resulting complexes.


Asunto(s)
Ácido Dioctil Sulfosuccínico , Tensoactivos , 1-Octanol , Ácido Dioctil Sulfosuccínico/química , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/química , Espectroscopía Infrarroja por Transformada de Fourier , Succinatos , Tensoactivos/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda