Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Med Vet Entomol ; 37(1): 143-151, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36264191

RESUMEN

Aedes-transmitted arboviruses have spread globally due to the spread of Aedes aegypti and Aedes albopictus. Its distribution is associated with human and physical geography. However, these factors have not been quantified in Cameroon. Therefore, the aim was to develop an Ae. albopictus geo-referenced database to examine the risk factors associated with the vector distribution in Cameroon. Data on the Ae. albopictus presence and absence were collated and mapped from studies in published scientific literature between 2000 and 2020. Publicly available earth observation data were used to assess human geography, land use and climate risk factors related to the vector distribution. A logistic binomial regression was conducted to identify the significant risk factors associated with Ae. albopictus distribution. In total, 111 data points were collated (presence = 87; absence = 24). Different data collection methods and sites hindered the spatiotemporal analysis. An increase of one wet month in a year increased the odds of Ae. albopictus presence by 5.6 times. One unit of peri-urban area increased the odds by 1.3 times. Using publicly available demographic and environmental data to better understand the key determinants of mosquito distributions may facilitate appropriately targeted public health messages and vector control strategies.


Asunto(s)
Aedes , Humanos , Animales , Mosquitos Vectores , Camerún , Geografía , Demografía
2.
Med Vet Entomol ; 36(3): 283-300, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35656818

RESUMEN

Little is known about the impact of ticks on livestock and humans in Cameroon. This study aimed to determine the prevalence, seasonal variation, and genetic diversity of hard ticks in the country. Ticks were collected during a cross-sectional survey on domestic livestock in two markets of Yaoundé in 2019 and 2020 and identified using morphological keys, 16S ribosomal DNA, (16S rDNA), and the cytochrome c oxidase subunit 1 (Cox1) genes. The infestation rates were 39.18%, 11.53%, and 2.74% in cattle, sheep, and goats respectively. Three genera of ticks were identified, Rhipicephalus, Amblyomma, and Hyalomma comprising eleven tick species. The main species were Rhipicephalus decoloratus (30.25%), R. microplus (24.43%), and Amblyomma variegatum (12.96%). Rhipicephalus spp. (81.31%) and Amblyomma variegatum (51.54%) were abundant during the rainy season, while Hyalomma spp. (83.86%) during the dry season (p-value <0.00001). Cox1 and 16S rDNA analysis showed a high level of genetic diversity among tick species with sequences close to those observed across Africa. Phylogenetic analysis revealed that our R. microplus belong to clade A and we identified R. sanguineus s.l. as R. linnea. This study shows a high tick infestation rate in cattle, while low in small ruminants with an extensive diversity of tick species, including several known vectors of important tick-borne diseases.


Asunto(s)
Enfermedades de los Bovinos , Ixodidae , Rhipicephalus , Enfermedades de las Ovejas , Infestaciones por Garrapatas , Animales , Camerún/epidemiología , Bovinos , Enfermedades de los Bovinos/epidemiología , Estudios Transversales , ADN Ribosómico , Variación Genética , Humanos , Ganado , Filogenia , Rhipicephalus/genética , Estaciones del Año , Ovinos , Enfermedades de las Ovejas/epidemiología , Infestaciones por Garrapatas/epidemiología , Infestaciones por Garrapatas/veterinaria
3.
Med Vet Entomol ; 36(3): 309-319, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35869781

RESUMEN

The response to recent dengue outbreaks in Burkina Faso was insecticide-based, despite poor knowledge of the vector population's susceptibility to the insecticides used. Here, we report on the susceptibility to the main insecticide classes and identify important underlying mechanisms in Aedes aegypti populations in Ouagadougou and Banfora, in 2019 and 2020. Wild Ae. aegypti were tested as adults in WHO bioassays and then screened in real time melting curve qPCR analyses to genotype the F1534C, V1016I, and V410L Aedes kdr mutations. Ae. aegypti showed moderate resistance to 0.1% bendiocarb (80-95% survival post-exposure), 0.8% Malathion (60-100%), 0.21% pirimiphos-methyl (75% - 97%), and high resistance to 0.03% deltamethrin (20-70%). PBO pre-exposure partially restored pyrethroid susceptibility. Genotyping detected high frequency of 1534C allele (0.92) and moderate 1016I (0.1-0.32). The V410L mutation was detected in Burkina Faso for the first time (frequency 0.1-0.36). Mosquitoes surviving 4 h exposure to 0.03% deltamethrin had significantly higher frequencies of the F1534C mutation than dead mosquitoes (0.70 vs. 0.96, p < 0.0001) and mosquitoes surviving 2 - 4 h exposure had a significantly reduced life span. Ae. aegypti from Burkina Faso are resistant to multiple insecticide classes with multiple mechanisms involved, demonstrating the essential role of insecticide resistance monitoring within national dengue control programmes.


Asunto(s)
Aedes , Dengue , Insecticidas , Piretrinas , Aedes/fisiología , Animales , Burkina Faso , Dengue/prevención & control , Dengue/veterinaria , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Mosquitos Vectores/genética , Mutación , Piretrinas/farmacología
4.
Intervirology ; 61(6): 265-271, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31048588

RESUMEN

BACKGROUND: On May 2017, a case of dengue serotype 1 was detected and confirmed through routine surveillance in a traveler returning from Kribi, a seaside town of Southern Cameroon. This study aimed at confirming the circulation of dengue virus (DENV) in Southern Cameroon. METHODS: A cross sectional study was carried out in Londji near Kribi from June 21-25, 2017, by a joint team of Centre Pasteur of Cameroon and the Department of Diseases, Epidemics and Pandemics Control. Blood samples of consented participants were collected and tested for anti-D ENV IgM using an IgM antibody capture enzyme-linked immunosorbent assay (MAC-ELISA), and for the detection of Zika, dengue, or chikungunya viruses using Trioplex real-time reverse transcription-polymerase chain reaction (RT-PCR). DENV RNA-positive samples were serotyped using an end-point nested RT-PCR. RESULTS: Ninety-one participants were enrolled, 50.55% (46/91) of them males. The mean age of the population was 30.71 years (±18.89). In total, 14.28% (13/91) of the participants had DENV infection (3 anti-DENV IgM positive and 10 DENV serotype 1 RT-PCR positive). CONCLUSION: The detection of DENV serotype 1 in an autochthonous population during this survey is a confirmation that the seaside city of Kribi is a risk area for contracting dengue infection in Cameroon.


Asunto(s)
Virus del Dengue/inmunología , Dengue/epidemiología , Dengue/virología , Brotes de Enfermedades , Población Rural , Anticuerpos Antivirales/inmunología , Camerún/epidemiología , Estudios Transversales , Dengue/diagnóstico , Virus del Dengue/clasificación , Virus del Dengue/genética , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Proyectos de Investigación , Serogrupo
5.
J Virol ; 89(1): 676-87, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25355879

RESUMEN

UNLABELLED: A total of 2,691 mosquitoes representing 17 species was collected from eight locations in southwest Cameroon and screened for pathogenic viruses. Ten isolates of a novel reovirus (genus Dinovernavirus) were detected by culturing mosquito pools on Aedes albopictus (C6/36) cell cultures. A virus that caused overt cytopathic effects was isolated, but it did not infect vertebrate cells or produce detectable disease in infant mice after intracerebral inoculation. The virus, tentatively designated Fako virus (FAKV), represents the first 9-segment, double-stranded RNA (dsRNA) virus to be isolated in nature. FAKV appears to have a broad mosquito host range, and its detection in male specimens suggests mosquito-to-mosquito transmission in nature. The structure of the T=1 FAKV virion, determined to subnanometer resolution by cryoelectron microscopy (cryo-EM), showed only four proteins per icosahedral asymmetric unit: a dimer of the major capsid protein, one turret protein, and one clamp protein. While all other turreted reoviruses of known structures have at least two copies of the clamp protein per asymmetric unit, FAKV's clamp protein bound at only one conformer of the major capsid protein. The FAKV capsid architecture and genome organization represent the most simplified reovirus described to date, and phylogenetic analysis suggests that it arose from a more complex ancestor by serial loss-of-function events. IMPORTANCE: We describe the detection, genetic, phenotypic, and structural characteristics of a novel Dinovernavirus species isolated from mosquitoes collected in Cameroon. The virus, tentatively designated Fako virus (FAKV), is related to both single-shelled and partially double-shelled viruses. The only other described virus in this genus was isolated from cultured mosquito cells. It was previously unclear whether the phenotypic characteristics of that virus were reflective of this genus in nature or were altered during serial passaging in the chronically infected cell line. FAKV is a naturally occurring single-shelled reovirus with a unique virion architecture that lacks several key structural elements thought to stabilize a single-shelled reovirus virion, suggesting what may be the minimal number of proteins needed to form a viable reovirus particle. FAKV evolved from more complex ancestors by losing a genome segment and several virion proteins.


Asunto(s)
Culicidae/virología , Genoma Viral , Reoviridae/genética , Reoviridae/aislamiento & purificación , Animales , Camerún , Línea Celular , Análisis por Conglomerados , Microscopía por Crioelectrón , Efecto Citopatogénico Viral , Evolución Molecular , Especificidad del Huésped , Sustancias Macromoleculares/ultraestructura , Masculino , Ratones , Datos de Secuencia Molecular , Filogenia , ARN Viral/genética , Reoviridae/fisiología , Reoviridae/ultraestructura , Análisis de Secuencia de ADN , Proteínas Estructurales Virales/ultraestructura , Virión/ultraestructura , Cultivo de Virus
6.
Mol Ecol ; 25(21): 5377-5395, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27671732

RESUMEN

Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations.


Asunto(s)
Aedes/genética , Variación Genética , Genética de Población , Animales , Asia , Kenia , Repeticiones de Microsatélite , Senegal
7.
PLoS Negl Trop Dis ; 18(6): e0011903, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38829904

RESUMEN

BACKGROUND: The first dengue outbreak in Sao Tome and Principe was reported in 2022. Entomological investigations were undertaken to establish the typology of Aedes larval habitats, the distribution of Ae. aegypti and Ae. albopictus, the related entomological risk and the susceptibility profile of Ae. aegypti to insecticides, to provide evidence to inform the outbreak response. METHODOLOGY/PRINCIPAL FINDINGS: Entomological surveys were performed in all seven health districts of Sao Tome and Principe during the dry and rainy seasons in 2022. WHO tube and synergist assays using piperonyl butoxide (PBO) and diethyl maleate (DEM) were carried out, together with genotyping of F1534C/V1016I/V410L mutations in Ae. aegypti. Aedes aegypti and Ae. albopictus were found in all seven health districts of the country with high abundance of Ae. aegypti in the most urbanised district, Agua Grande. Both Aedes species bred mainly in used tyres, discarded tanks and water storage containers. In both survey periods, the Breteau (BI > 50), house (HI > 35%) and container (CI > 20%) indices were higher than the thresholds established by WHO to indicate high potential risk of dengue transmission. The Ae. aegypti sampled were susceptible to all insecticides tested except dichlorodiphenyltrichloroethane (DDT) (9.2% mortality, resistant), bendiocarb (61.4% mortality, resistant) and alpha-cypermethrin (97% mortality, probable resistant). A full recovery was observed in Ae. aegypti resistant to bendiocarb after pre-exposure to synergist PBO. Only one Ae. aegypti specimen was found carrying F1534C mutation. CONCLUSIONS/SIGNIFICANCE: These findings revealed a high potential risk for dengue transmission throughout the year, with the bulk of larval breeding occurring in used tyres, water storage and discarded containers. Most of the insecticides tested remain effective to control Aedes vectors in Sao Tome, except DDT and bendiocarb. These data underline the importance of raising community awareness and implementing routine dengue vector control strategies to prevent further outbreaks in Sao Tome and Principe, and elsewhere in the subregion.


Asunto(s)
Aedes , Dengue , Brotes de Enfermedades , Resistencia a los Insecticidas , Insecticidas , Larva , Mosquitos Vectores , Aedes/efectos de los fármacos , Aedes/genética , Aedes/virología , Animales , Dengue/transmisión , Dengue/epidemiología , Insecticidas/farmacología , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/genética , Mosquitos Vectores/virología , Resistencia a los Insecticidas/genética , Larva/efectos de los fármacos , Larva/virología , Humanos , Butóxido de Piperonilo/farmacología , Femenino , Maleatos/farmacología , Ecosistema , Virus del Dengue/efectos de los fármacos , Virus del Dengue/genética
8.
Infect Dis Poverty ; 13(1): 26, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486340

RESUMEN

We look at the link between climate change and vector-borne diseases in low- and middle-income countries in Africa. The large endemicity and escalating threat of diseases such as malaria and arboviral diseases, intensified by climate change, disproportionately affects vulnerable communities globally. We highlight the urgency of prioritizing research and development, advocating for robust scientific inquiry to promote adaptation strategies, and the vital role that the next generation of African research leaders will play in addressing these challenges. Despite significant challenges such as funding shortages within countries, various pan-African-oriented funding bodies such as the African Academy of Sciences, the Africa Research Excellence Fund, the Wellcome Trust, the U.S. National Institutes of Health, and the Bill and Melinda Gates Foundation as well as initiatives such as the African Research Initiative for Scientific Excellence and the Pan-African Mosquito Control Association, have empowered (or are empowering) these researchers by supporting capacity building activities, including continental and global networking, skill development, mentoring, and African-led research. This article underscores the urgency of increased national investment in research, proposing the establishment of research government agencies to drive evidence-based interventions. Collaboration between governments and scientific communities, sustained by pan-African funding bodies, is crucial. Through these efforts, African nations are likely to enhance the resilience and adaptive capacity of their systems and communities by navigating these challenges effectively, fostering scientific excellence and implementing transformative solutions against climate-sensitive vector-borne diseases.


Asunto(s)
Malaria , Humanos , África/epidemiología , Malaria/epidemiología , Malaria/prevención & control , Investigadores , Cambio Climático , Creación de Capacidad
9.
Sci Rep ; 13(1): 130, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599854

RESUMEN

Laboratory and field-based studies of the invasive mosquito Aedes albopictus demonstrate its competency to transmit over twenty different pathogens linked to a broad range of vertebrate hosts. The vectorial capacity of Ae. albopictus to transmit these pathogens remains unclear, partly due to knowledge gaps regarding its feeding behavior. Blood meal analyses from field-captured specimens have shown vastly different feeding patterns, with a wide range of anthropophagy (human feeding) and host diversity. To address this knowledge gap, we asked whether differences in innate host preference may drive observed variation in Ae. albopictus feeding patterns in nature. Low generation colonies (F2-F4) were established with field-collected mosquitoes from three populations with high reported anthropophagy (Thailand, Cameroon, and Florida, USA) and three populations in the United States with low reported anthropophagy (New York, Maryland, and Virginia). The preference of these Ae. albopictus colonies for human versus non-human animal odor was assessed in a dual-port olfactometer along with control Ae. aegypti colonies already known to show divergent behavior in this assay. All Ae. albopictus colonies were less likely (p < 0.05) to choose the human-baited port than the anthropophilic Ae. aegypti control, instead behaving similarly to zoophilic Ae. aegypti. Our results suggest that variation in reported Ae. albopictus feeding patterns are not driven by differences in innate host preference, but may result from differences in host availability. This work is the first to compare Ae. albopictus and Ae. aegypti host preference directly and provides insight into differential vectorial capacity and human feeding risk.


Asunto(s)
Aedes , Animales , Odorantes , Conducta Alimentaria , Florida , Tailandia
10.
Front Cell Infect Microbiol ; 13: 1132495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056704

RESUMEN

Introduction: Despite a high fatality rate in humans, little is known about the occurrence of Crimean-Congo hemorrhagic fever virus (CCHFV) in Cameroon. Hence, this pioneer study was started with the aim of determining the prevalence of CCHFV in domestic ruminants and its potential vector ticks in Cameroon. Methods: A cross-sectional study was carried out in two livestock markets of Yaoundé to collect blood and ticks from cattle, sheep, and goats. CCHFV-specific antibodies were detected in the plasma using a commercial ELISA assay and confirmed using a modified seroneutralization test. Ticks were screened for the presence of orthonairoviruses by amplification of a fragment of the L segment using RT-PCR. Phylogeny was used to infer the genetic evolution of the virus. Results: Overall, 756 plasma samples were collected from 441 cattle, 168 goats, and 147 sheep. The seroprevalence of CCHFV was 61.77% for all animals, with the highest rate found in cattle (433/441, 98.18%) followed by sheep (23/147, 15.65%), and goats (11/168, 6.55%), (p-value < 0.0001). The highest seroprevalence rate was found in cattle from the Far North region (100%). Overall, 1500 ticks of the Rhipicephalus (773/1500, 51.53%), Amblyomma (341/1500, 22.73%), and Hyalomma (386/1500, 25.73%) genera were screened. CCHFV was identified in one Hyalomma truncatum pool collected from cattle. Phylogenetic analysis of the L segment classified this CCHFV strain within the African genotype III. Conclusion: These seroprevalence results call for additional epidemiological studies on CCHFV, especially among at-risk human and animal populations in high-risk areas of the country.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Ixodidae , Rhipicephalus , Animales , Humanos , Bovinos , Ovinos , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Fiebre Hemorrágica de Crimea/epidemiología , Fiebre Hemorrágica de Crimea/veterinaria , Ganado , Camerún/epidemiología , Estudios Seroepidemiológicos , Prevalencia , Estudios Transversales , Filogenia , Cabras
11.
Artículo en Inglés | MEDLINE | ID: mdl-35726222

RESUMEN

Western Africa is vulnerable to arboviral disease transmission, having recently experienced major outbreaks of chikungunya, dengue, yellow fever and Zika. However, there have been relatively few studies on the natural history of the two major human arbovirus vectors in this region, Aedes aegypti and Ae. albopictus, potentially limiting the implementation of effective vector control. We systematically searched for and reviewed relevant studies on the behaviour and ecology of Ae. aegypti and Ae. albopictus in Western Africa, published over the last 40 years. We identified 73 relevant studies, over half of which were conducted in Nigeria, Senegal, or Côte d'Ivoire. Most studies investigated the ecology of Ae. aegypti and Ae. albopictus, exploring the impact of seasonality and land cover on mosquito populations and identifying aquatic habitats. This review highlights the adaptation of Ae. albopictus to urban environments and its invasive potential, and the year-round maintenance of Ae. aegypti populations in water storage containers. However, important gaps were identified in the literature on the behaviour of both species, particularly Ae. albopictus. In Western Africa, Ae. aegypti and Ae. albopictus appear to be mainly anthropophilic and to bite predominantly during the day, but further research is needed to confirm this to inform planning of effective vector control strategies. We discuss the public health implications of these findings and comment on the suitability of existing and novel options for control in Western Africa.

12.
PLoS One ; 17(12): e0278779, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36512581

RESUMEN

Prevention and control of Aedes-borne viral diseases such as dengue rely on vector control, including the use of insecticides and reduction of larval sources. However, this is threatened by the emergence of insecticide resistance. This study aimed to update the spatial distribution, the insecticide resistance profile of A. aegypti and A. albopictus and the potential resistant mechanisms implicated in the city of Douala. Immature stages of Aedes were collected in August 2020 in eight neighbourhoods in Douala and reared to adult stages. Adult bioassays, and piperonyl butoxide (PBO) synergist assays were carried out according to World Health Organization recommendations. Expression of some candidate metabolic genes including Cyp9M6F88/87, Cyp9J28a, Cyp9J10 and Cyp9J32 in A. aegypti, and Cyp6P12 in A. albopictus were assessed using qPCR. A. aegypti adults G0 were screened using real time melting curve qPCR analyses to genotype the F1534C, V1016I and V410L Aedes kdr mutations. Overall, A. aegypti is the predominant Aedes species, but analyses revealed that both A. albopictus and A. aegypti coexist in all the prospected neighbourhoods of Douala. High level of resistance was observed to three pyrethroids tested in both Aedes species. In A. aegypti a lower mortality rate was reported to permethrin (5.83%) and a higher mortality rate to deltamethrin (63.74%). Meanwhile, for A. albopictus, lower (6.72%) and higher (84.11%) mortality rates were reported to deltamethrin. Similar analysis with bendiocarb, revealed for A. aegypti a loss of susceptibility. However, in A. albopictus samples, analyses revealed a susceptibility in Logbessou, and confirmed resistance in Kotto (59.78%). A partial recovery of mortality was found to insecticides after pre-exposure to PBO. Cyp6P12 was found significantly overexpressed in A. albopictus permethrin resistant and Cyp9M6F88/87 for A. aegypti deltamethrin resistant. F1534C, V1016I and V410L mutations were detected in A. aegypti from different neighbourhoods and by considering the combination of these three kdr 14 genotypes were found. These findings provide relevant information which should be capitalised in the implementation of arbovirus vector control strategies and insecticide resistance management.


Asunto(s)
Aedes , Insecticidas , Piretrinas , Animales , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Permetrina , Camerún , Mosquitos Vectores/genética , Piretrinas/farmacología
13.
PLoS Negl Trop Dis ; 16(8): e0010683, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35951644

RESUMEN

BACKGROUND: Rift Valley fever (RVF) is a mosquito-borne zoonosis endemic in Africa. With little known of the burden or epidemiology of RVF virus (RVFV) in Cameroon, this study aimed to determine the seroprevalence of RVFV in domestic ruminants of various origins in two markets of Yaoundé, Cameroon. METHODOLOGY/PRINCIPAL FINDINGS: The origin of animals randomly sampled at two livestock markets in Yaoundé were recorded and plasma samples collected for competitive and capture Enzyme-linked Immunosorbent Assay (ELISA) to determine the prevalence of Immunoglobulins G (IgG) and Immunoglobulins M (IgM) antibodies. Following ELISA IgM results, a real-time reverse transcription-polymerase chain reaction (qRT-PCR) was performed to detect RVFV RNA. In June-August 2019, February-March 2020, and March-April 2021, 756 plasma samples were collected from 441 cattle, 168 goats, and 147 sheep. RVFV IgG seroprevalence was 25.7% for all animals, 42.2% in cattle, 2.7% in sheep, and 2.4% in goats. However, IgM seroprevalence was low, at 0.9% in all animals, 1.1% in cattle, 1.4% in sheep, and 0% in goats. The seroprevalence rates varied according to the animal's origin with the highest rate (52.6%) in cattle from Sudan. In Cameroon, IgG and IgM rates respectively were 45.1% and 2.8% in the North, 44.8% and 0% in the Adamawa, 38.6% and 1.7% in the Far-North. All IgM positive samples were from Cameroon. In cattle, 2/5 IgM positive samples were also IgG positive, but both IgM positive samples in sheep were IgG negative. Three (42.9%) IgM positive samples were positive for viral RVFV RNA using qRT-PCR but given the high ct values, no amplicon was obtained. CONCLUSION/SIGNIFICANCE: These findings confirm the circulation of RVFV in livestock in Cameroon with prevalence rates varying by location. Despite low IgM seroprevalence rates, RVF outbreaks can occur without being noticed. Further epidemiological studies are needed to have a broad understanding of RVFV transmission in Cameroon.


Asunto(s)
Enfermedades de los Bovinos , Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Enfermedades de las Ovejas , Animales , Anticuerpos Antivirales , Camerún/epidemiología , Bovinos , Ensayo de Inmunoadsorción Enzimática/veterinaria , Cabras , Inmunoglobulina G , Inmunoglobulina M , Ganado , ARN Viral/genética , Virus de la Fiebre del Valle del Rift/genética , Rumiantes , Estudios Seroepidemiológicos , Ovinos
14.
Infect Dis Poverty ; 11(1): 90, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35974351

RESUMEN

BACKGROUND: Dengue (DENV), chikungunya (CHIKV) and Zika virus (ZIKV), are mosquito-borne viruses of medical importance in most tropical and subtropical regions. Vector control, primarily through insecticides, remains the primary method to prevent their transmission. Here, we evaluated insecticide resistance profiles and identified important underlying resistance mechanisms in populations of Aedes aegypti and Ae. albopictus from six different regions in Cameroon to pesticides commonly used during military and civilian public health vector control operations. METHODS: Aedes mosquitoes were sampled as larvae or pupae between August 2020 and July 2021 in six locations across Cameroon and reared until the next generation, G1. Ae. aegypti and Ae. albopictus adults from G1 were tested following World Health Organization (WHO) recommendations and Ae. aegypti G0 adults screened with real time melting curve qPCR analyses to genotype the F1534C, V1016I and V410L Aedes kdr mutations. Piperonyl butoxide (PBO) assays and real time qPCR were carried out from some cytochrome p450 genes known to be involved in metabolic resistance. Statistical analyses were performed using Chi-square test and generalized linear models. RESULTS: Loss of susceptibility was observed to all insecticides tested. Mortality rates from tests with 0.25% permethrin varied from 24.27 to 85.89% in Ae. aegypti and from 17.35% to 68.08% in Ae. albopictus. Mortality rates for 0.03% deltamethrin were between 23.30% and 88.20% in Ae. aegypti and between 69.47 and 84.11% in Ae. albopictus. We found a moderate level of resistance against bendiocarb, with mortality rates ranging from 69.31% to 90.26% in Ae. aegypti and from 86.75 to 98.95% in Ae. albopictus. With PBO pre-exposure, we found partial or fully restored susceptibility to pyrethroids and bendiocarb. The genes Cyp9M6F88/87 and Cyp9J10 were overexpressed in Ae. aegypti populations from Douala sites resistant to permethrin and deltamethrin. Cyp6P12 was highly expressed in alphacypermethrin and permethrin resistant Ae. albopictus samples. F1534C and V1016I mutations were detected in A. aegypti mosquitoes and for the first time V410L was reported in Cameroon. CONCLUSIONS: This study revealed that Ae. aegypti and Ae. albopictus are resistant to multiple insecticide classes with multiple resistance mechanisms implicated. These findings could guide insecticide use to control arbovirus vectors in Cameroon.


Asunto(s)
Aedes , Insecticidas , Piretrinas , Infección por el Virus Zika , Virus Zika , Animales , Camerún , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Mosquitos Vectores/genética , Mutación , Permetrina/farmacología , Piretrinas/farmacología
15.
Parasit Vectors ; 15(1): 381, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271451

RESUMEN

Arboviral diseases such as dengue, Zika and chikungunya transmitted by Aedes mosquitoes have been reported in 34 African countries. Available data indicate that in recent years there have been dengue and chikungunya outbreaks in the West Africa subregion, in countries including Côte d'Ivoire, Burkina Faso, Gabon, Senegal, and Benin. These viral diseases are causing an increased public health burden, which impedes poverty reduction and sustainable development. Aedes surveillance and control capacity, which are key to reducing the prevalence of arboviral infections, need to be strengthened in West Africa, to provide information essential for the formulation of effective vector control strategies and the prediction of arboviral disease outbreaks. In line with these objectives, the West African Aedes Surveillance Network (WAASuN) was created in 2017 at a meeting held in Sierra Leone comprising African scientists working on Aedes mosquitoes. This manuscript describes the proceedings and discusses key highlights of the meeting.


Asunto(s)
Aedes , Infecciones por Arbovirus , Fiebre Chikungunya , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Mosquitos Vectores , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/prevención & control , Côte d'Ivoire/epidemiología , Dengue/epidemiología
16.
Nat Commun ; 13(1): 4490, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918360

RESUMEN

First identified in 1947, Zika virus took roughly 70 years to cause a pandemic unusually associated with virus-induced brain damage in newborns. Zika virus is transmitted by mosquitoes, mainly Aedes aegypti, and secondarily, Aedes albopictus, both colonizing a large strip encompassing tropical and temperate regions. As part of the international project ZIKAlliance initiated in 2016, 50 mosquito populations from six species collected in 12 countries were experimentally infected with different Zika viruses. Here, we show that Ae. aegypti is mainly responsible for Zika virus transmission having the highest susceptibility to viral infections. Other species play a secondary role in transmission while Culex mosquitoes are largely non-susceptible. Zika strain is expected to significantly modulate transmission efficiency with African strains being more likely to cause an outbreak. As the distribution of Ae. aegypti will doubtless expand with climate change and without new marketed vaccines, all the ingredients are in place to relive a new pandemic of Zika.


Asunto(s)
Aedes , Infección por el Virus Zika , Virus Zika , Animales , Brotes de Enfermedades , Humanos , Recién Nacido , Mosquitos Vectores
17.
PLoS Negl Trop Dis ; 15(10): e0009860, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34695135

RESUMEN

Acute febrile patients presenting at hospitals in Douala, Cameroon between July and December 2020, were screened for dengue infections using real time RT-PCR on fragments of the 5' and 3' UTR genomic regions. In total, 12.8% (41/320) of cases examined were positive for dengue. Dengue virus 3 (DENV-3) was the most common serotype found (68.3%), followed by DENV-2 (19.5%) and DENV-1 (4.9%). Co-infections of DENV-3 and DENV-2 were found in 3 cases. Jaundice and headache were the most frequent clinical signs associated with infection and 56% (23/41) of the cases were co-infections with malaria. Phylogenetic analysis of the envelope gene identified DENV-1 as belonging to genotype V, DENV-2 to genotype II and DENV-3 to genotype III. The simultaneous occurrence of three serotypes in Douala reveals dengue as a serious public health threat for Cameroon and highlights the need for further epidemiological studies in the major cities of this region.


Asunto(s)
Virus del Dengue/aislamiento & purificación , Dengue/virología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Camerún/epidemiología , Niño , Preescolar , Coinfección/epidemiología , Coinfección/virología , Dengue/epidemiología , Virus del Dengue/clasificación , Virus del Dengue/genética , Femenino , Genotipo , Humanos , Lactante , Masculino , Persona de Mediana Edad , Filogenia , Serogrupo , Adulto Joven
18.
Parasit Vectors ; 13(1): 492, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32977841

RESUMEN

BACKGROUND: Invasive mosquito species, such as Aedes albopictus in Congo can affect the distribution of native species, changing the vector composition and pattern of disease transmission. Here, we comparatively establish the geographical distribution and larval habitat preference of Ae. aegypti and Ae. albopictus and the risk of arbovirus disease outbreaks using Stegomyia indices in the city of Brazzaville, the capital of the Republic of the Congo. METHODS: Human dwelling surveys of water-holding containers for immature stages of Aedes was carried out in December 2017 in Brazzaville through a random cluster sampling method. A total of 268 human dwellings distributed in 9 boroughs and 27 neighbourhoods were surveyed across the city. RESULTS: Overall, 455 potential larval habitats were surveyed. Both Ae. aegypti and Ae. albopictus were collected across the city with an overall high prevalence of Ae. aegypti (53.1%) compared to Ae. albopictus (46.9%). Geographical distribution analysis showed that Ae. aegypti was more abundant (mean = 6.6 ± 1.4) in neighbourhoods located in downtown, while the abundance of Ae. albopictus was low (mean = 3.5 ± 0.6) in suburbs. Peridomestic containers, especially discarded tanks, were the most strongly colonized productive larval habitat for both mosquito species with the prevalence of 56.4% and 53.1% for Ae. aegypti and Ae. albopictus, respectively. Globally, the house index (HI), Breteau index (BI) and container index (CI) were high for Ae. aegypti (26.6%, 38.4% and 22.6%) and Ae. albopictus (33.3%, 49.6% and 26.6%) compared to the transmission risk threshold (5%, 5% and 20%) established by the WHO/PAHO. Overall, pupae-based indices (the pupae index and the pupae per person index) were not significantly different between Ae. aegypti (273.4% and 23.2%) and Ae. albopictus (228.8% and 19.5%). CONCLUSIONS: The findings of this study suggest a high risk for transmission of arbovirus diseases in Brazzaville and call for an urgent need to implement vector control strategies against these vectors in the Republic of the Congo.


Asunto(s)
Aedes/fisiología , Infecciones por Arbovirus/transmisión , Arbovirus/fisiología , Mosquitos Vectores/fisiología , Aedes/clasificación , Aedes/genética , Aedes/virología , Distribución Animal , Animales , Infecciones por Arbovirus/virología , Arbovirus/genética , Arbovirus/aislamiento & purificación , Ciudades , Congo , Humanos , Larva/clasificación , Larva/genética , Larva/crecimiento & desarrollo , Larva/virología , Mosquitos Vectores/clasificación , Mosquitos Vectores/genética , Mosquitos Vectores/virología
19.
Infect Dis Poverty ; 9(1): 23, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32114983

RESUMEN

BACKGROUND: In the Republic of Congo, with two massive outbreaks of chikungunya observed this decade, little is known about the insecticide resistance profile of the two major arbovirus vectors Aedes aegypti and Aedes albopictus. Here, we established the resistance profile of both species to insecticides and explored the resistance mechanisms to help Congo to better prepare for future outbreaks. METHODS: Immature stages of Ae. aegypti and Ae. albopictus were sampled in May 2017 in eight cities of the Republic of the Congo and reared to adult stage. Larval and adult bioassays, and synergist (piperonyl butoxide [PBO]) assays were carried out according to WHO guidelines. F1534C mutation was genotyped in field collected adults in both species and the polymorphism of the sodium channel gene assessed in Ae. aegypti. RESULTS: All tested populations were susceptible to temephos after larval bioassays. A high resistance level was observed to 4% DDT in both species countrywide (21.9-88.3% mortality). All but one population (Ae. aegypti from Ngo) exhibited resistance to type I pyrethroid, permethrin, but showed a full susceptibility to type II pyrethroid (deltamethrin) in almost all locations. Resistance was also reported to 1% propoxur in Ae. aegypti likewise in two Ae. albopictus populations (Owando and Ouesso), and the remaining were fully susceptible. All populations of both species were fully susceptible to 1% fenitrothion. A full recovery of susceptibility was observed in Ae. aegypti and Ae. albopictus when pre-exposed to PBO and then to propoxur and permethrin respectively. The F1534C kdr mutation was not detected in either species. The high genetic variability of the portion of sodium channel spanning the F1534C in Ae. aegypti further supported that knockdown resistance probably play no role in the permethrin resistance. CONCLUSIONS: Our study showed that both Aedes species were susceptible to organophosphates (temephos and fenitrothion), while for other insecticide classes tested the profile of resistance vary according to the population origin. These findings could help to implement better and efficient strategies to control these species in the Congo in the advent of future arbovirus outbreaks.


Asunto(s)
Aedes/efectos de los fármacos , Fiebre Chikungunya/prevención & control , Resistencia a los Insecticidas , Insecticidas/farmacología , Piretrinas/farmacología , Aedes/virología , Animales , Congo , Variación Genética , Proteínas de Insectos/genética , Larva/efectos de los fármacos , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/virología
20.
Infect Dis Poverty ; 9(1): 152, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33138860

RESUMEN

BACKGROUND: Aedes borne viral diseases, notably dengue, are increasingly reported in Cameroon with Aedes aegypti being a major vector. Data on insecticide resistance of this vector and underlying mechanisms needed for outbreak preparedness remain scarce in Cameroon. Here, we present the nationwide distribution of insecticide resistance in Ae. aegypti and investigate the potential resistance mechanisms involved. METHODS: Immature stages of Ae. aegypti were collected between March and July 2017 in 13 locations across Cameroon and reared until G1/G2/G3 generation. Larval, adult bioassays, and piperonyl butoxide (PBO) synergist assays were carried out according to World Health Organization guidelines. F1534C mutation was genotyped using allele specific polymerase chain reaction in field collected adults (Go) and the polymorphism of the sodium channel gene was assessed. The χ2 test was used to compare the mortality rate between bioassays with insecticides only and bioassays after preexposure to PBO synergist. RESULTS: Larval bioassay revealed that all the three populations tested with temephos were susceptible. Adult bioassays showed a good level of susceptibility toward both pyrethroids tested, 0.25% permethrin and 0.05% deltamethrin, with six out of 10 populations susceptible. However, two populations (Douala and Edéa) were resistant (deltamethrin [73.2-92.5% mortality], permethrin [2.6-76.3% mortality]). The resistance to 4% dichlorodiphenyltrichloroethane was observed in four out of 10 populations tested (16.8-87.1% mortality). Resistance was also reported to carbamates including 0.1% propoxur (60.8-87.1% mortality) and to 0.1% bendiocarb (82.9% mortality). All populations tested were fully susceptible to 1% fenitrothion. A partial recovery of susceptibility was observed in the pyrethroid resistant population of Douala after pre-exposed to PBO suggesting the implication of cytochrome P450 monoxygenases permethrin resistance. Genotyping and sequencing detected the F1534C kdr mutation in the two pyrethroid resistant locations of Edéa and Douala, with allelic frequency of 3.3% and 33.3% respectively. However, the high genetic diversity of the sodium channel gene supports the recent introduction of this mutation in Cameroon. CONCLUSIONS: This study revealed the contrasting resistance profiles to insecticides of Ae. aegypti populations in Cameroon suggesting that, instead of a unique nationwide control approach, a regionally adapted strategy will be needed to control this vector. The localised distribution of the F1534C kdr mutation supports this region-specific control strategy.


Asunto(s)
Aedes/efectos de los fármacos , Aedes/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Animales , Camerún , Variación Genética , Haplotipos , Larva/efectos de los fármacos , Mutación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda