RESUMEN
Ribonuclease HI, an endoribonuclease, catalyzes the hydrolysis of the RNA strand of an RNA/DNA hybrid and requires divalent metal ions for its enzymatic activity. However, the mechanistic details of the activity of ribonuclease HI and its interaction with divalent metal ions remain unclear. In this study, we performed real-time monitoring of the enzyme-substrate complex in the presence of divalent metal ions (Mn2+ or Zn2+) using electrospray ionization-mass spectrometry (ESI-MS). The findings provide clear evidence that the enzymatic activity of the ternary complex requires the binding of two divalent metal ions. The Zn2+ ions bind to both the enzyme itself and the enzyme:substrate complex more strongly than Mn2+ ions, and gives, in part, the ternary complex, [RNase HI:nicked RNA/DNA hybrid:2Zn2+], suggesting that the ternary complex is retained, even after the hydrolysis of the substrate. The collective results presented herein shed new light on the essential role of divalent metal ions in the activity of ribonuclease HI and demonstrate how Zn2+ ions confer inhibitory properties on the activity of this enzyme by forming a highly stable complex with the substrate.
Asunto(s)
Ribonucleasa H/química , Ribonucleasa H/metabolismo , Sitios de Unión , Catálisis , Cationes Bivalentes/metabolismo , ADN/química , Endorribonucleasas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidrólisis , Iones/metabolismo , Cinética , Magnesio/metabolismo , Manganeso/metabolismo , ARN/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Especificidad por SustratoRESUMEN
Serratia marcescens secretes a lipase, LipA, through a type I secretion system (T1SS). The T1SS for LipA, the Lip system, is composed of an inner membrane ABC transporter with its nucleotide-binding domains (NBD), LipB, a membrane fusion protein, LipC, and an outer membrane channel protein, LipD. Passenger protein secreted by this system has been functionally and structurally characterized well, but relatively little information about the transporter complex is available. Here, we report the crystallographic studies of LipC without the membrane anchor region, LipC-, and the NBD of LipB (LipB-NBD). LipC- crystallographic analysis has led to the determination of the structure of the long α-helical and lipoyl domains, but not the area where it interacts with LipB, suggesting that the region is flexible without LipB. The long α-helical domain has three α-helices, which interacts with LipD in the periplasm. LipB-NBD has the common overall architecture and ATP hydrolysis activity of ABC transporter NBDs. Using the predicted models of full-length LipB and LipD, the overall structural insight into the Lip system is discussed.
Asunto(s)
Proteínas Bacterianas/química , Lipasa/química , Lipasa/metabolismo , Proteínas de la Fusión de la Membrana/química , Fusión de Membrana/fisiología , Nucleótidos/metabolismo , Serratia marcescens/enzimología , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Proteínas de la Fusión de la Membrana/metabolismo , Nucleótidos/química , Conformación ProteicaRESUMEN
The crystal structure of metagenome-derived LC-cutinase with polyethylene terephthalate (PET)-degrading activity was determined at 1.5 Å resolution. The structure strongly resembles that of Thermobifida alba cutinase. Ser165, Asp210, and His242 form the catalytic triad. Thermal denaturation and guanidine hydrochloride (GdnHCl)-induced unfolding of LC-cutinase were analyzed at pH 8.0 by circular dichroism spectroscopy. The midpoint of the transition of the thermal denaturation curve, T1/2, and that of the GdnHCl-induced unfolding curve, Cm, at 30 °C were 86.2 °C and 4.02 M, respectively. The free energy change of unfolding in the absence of GdnHCl, ΔG(H2O), was 41.8 kJ mol(-1) at 30 °C. LC-cutinase unfolded very slowly in GdnHCl with an unfolding rate, ku(H2O), of 3.28 × 10(-6) s(-1) at 50 °C. These results indicate that LC-cutinase is a kinetically robust protein. Nevertheless, the optimal temperature for the activity of LC-cutinase toward p-nitrophenyl butyrate (50 °C) was considerably lower than the T1/2 value. It increased by 10 °C in the presence of 1% polyethylene glycol (PEG) 1000. It also increased by at least 20 °C when PET was used as a substrate. These results suggest that the active site is protected from a heat-induced local conformational change by binding of PEG or PET. LC-cutinase contains one disulfide bond between Cys275 and Cys292. To examine whether this disulfide bond contributes to the thermodynamic and kinetic stability of LC-cutinase, C275/292A-cutinase without this disulfide bond was constructed. Thermal denaturation studies and equilibrium and kinetic studies of the GdnHCl-induced unfolding of C275/292A-cutinase indicate that this disulfide bond contributes not only to the thermodynamic stability but also to the kinetic stability of LC-cutinase.
Asunto(s)
Hidrolasas de Éster Carboxílico/química , Metagenoma/genética , Streptomyces/enzimología , Termodinámica , Sitios de Unión/genética , Hidrolasas de Éster Carboxílico/metabolismo , Cristalografía por Rayos X , Estabilidad de Enzimas , Cinética , Tereftalatos Polietilenos/química , Desnaturalización Proteica , Streptomyces/genéticaRESUMEN
Kynurenine aminotransferase (KAT) is a homodimeric pyridoxal protein that mediates the catalytic conversion of kynurenine (KYN) to kynurenic acid (KYA), an endogenous N-methyl-d-aspartate (NMDA) receptor antagonist. KAT is involved in the biosynthesis of glutamic and aspartic acid, functions as a neurotransmitter for the NMDA receptor in mammals, and is regulated by allosteric mechanisms. Its importance in various diseases such as schizophrenia makes KAT a highly attractive drug target. Here, we present the crystal structure of the Pyrococcus horikoshii KAT (PhKAT) in complex with pyridoxamine phosphates (PMP), KYN, and KYA. Surprisingly, the PMP was bound to the LYS-269 of phKAT by forming a covalent hydrazine bond. This crystal structure clearly shows that an amino group of KYN was transaminated to PLP, which forms a Schiff's base with the LYS-269 of the KYN. Thus, our structure confirms that the PMPs represent an intermediate state during the KAT reaction. Thus, PhKAT catalyzes the sequential conversion of KYN to KYA via the formation of an intermediate 4-(2-aminophenyl)-2,4-dioxobutanoate (4AD), which is spontaneously converted to KYA in the absence of an amino group acceptor. Furthermore, we identified the two entry and exit sites of the PhKAT homodimer for KYN and KYA, respectively. The structural data on PhKAT presented in this manuscript contributes to further the understanding of transaminase enzyme reaction mechanisms.
Asunto(s)
Ácido Quinurénico/metabolismo , Transaminasas/química , Transaminasas/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Ácido Quinurénico/química , Quinurenina/química , Quinurenina/metabolismo , Datos de Secuencia Molecular , Piridoxamina/análogos & derivados , Piridoxamina/química , Piridoxamina/metabolismo , Pyrococcus horikoshii/metabolismo , Homología de Secuencia de AminoácidoRESUMEN
RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1 (Halo-RNase H1) requires ⩾2M NaCl, ⩾10mM MnCl2, or ⩾300mM MgCl2 for folding. To understand the structural basis for this salt-dependent folding of Halo-RNase H1, the crystal structure of Halo-RNase H1 was determined in the presence of 10mM MnCl2. The structure of Halo-RNase H1 highly resembles those of metagenome-derived LC11-RNase H1 and Sulfolobus tokodaii RNase H1 (Sto-RNase H1), except that it contains two Mn(2+) ions at the active site and has three bi-aspartate sites on its surface. To examine whether negative charge repulsion at these sites are responsible for low-salt denaturation of Halo-RNase H1, a series of the mutant proteins of Halo-RNase H1 at these sites were constructed. The far-UV CD spectra of these mutant proteins measured in the presence of various concentrations of NaCl suggest that these mutant proteins exist in an equilibrium between a partially folded state and a folded state. However, the fraction of the protein in a folded state is nearly 0% for the active site mutant, 40% for the bi-aspartate site mutant, and 70% for the mutant at both sites in the absence of salt. The active site mutant requires relatively low concentration (â¼0.5M) of salt for folding. These results suggest that suppression of negative charge repulsion at both active and bi-aspartate sites by salt is necessary to yield a folded protein.
Asunto(s)
Conformación Proteica/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Ribonucleasa H/química , Dominio Catalítico/efectos de los fármacos , Cloruros/química , Cloruros/farmacología , Halobacterium/efectos de los fármacos , Cloruro de Magnesio/química , Cloruro de Magnesio/farmacología , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Mutación , Ribonucleasa H/efectos de los fármacos , Cloruro de Sodio/química , Cloruro de Sodio/farmacologíaRESUMEN
The abnormal prion protein (scrapie-associated prion protein, PrP(Sc)) is considered to be included in the group of infectious agents of transmissible spongiform encephalopathies. Since PrP(Sc) is highly resistant to normal sterilization procedures, the decontamination of PrP(Sc) is a significant public health issue. In the present study, a hyperthermostable protease, Tk-subtilisin, was used to degrade PrP(Sc). Although PrP(Sc) is known to be resistant toward proteolytic enzymes, Tk-subtilisin was able to degrade PrP(Sc) under extreme conditions. The level of PrP(Sc) in brain homogenates was found to decrease significantly in vitro following Tk-subtilisin treatment at 100 °C, whereas some protease-resistant fractions remain after proteinase K treatment. Rather small amounts of Tk-subtilisin (0.3 U) were required to degrade PrP(Sc) at 100 °C and pH 8.0. In addition, Tk-subtilisin was observed to degrade PrP(Sc) in the presence of sodium dodecyl sulfate or other industrial surfactants. Although several proteases degrading PrP(Sc) have been reported, practical decontamination procedures using enzymes are not available. This report aims to provide basic information for the practical use of a proteolytic enzyme for PrP(Sc) degradation.
Asunto(s)
Proteínas PrPSc/metabolismo , Subtilisina/aislamiento & purificación , Subtilisina/metabolismo , Thermococcus/enzimología , Detergentes/metabolismo , Inhibidores Enzimáticos/metabolismo , Estabilidad de Enzimas , Calor , Concentración de Iones de Hidrógeno , Proteolisis , Dodecil Sulfato de Sodio/metabolismo , Subtilisina/químicaRESUMEN
Subtilisin E is activated from its inactive precursor Pro-subtilisin E by autoprocessing and degradation of the propeptide. Subtilisin E has two calcium binding sites, the high-affinity Ca1 site and the low-affinity Ca2 site. The Ca1 site is conserved in various subtilisin-like proteases and is important for stability. This site is not formed in Pro-subtilisin E, because the structural rearrangement of the N-terminal region of the subtilisin domain upon autoprocessing is necessary for the formation of this site. As a result, Pro-subtilisin E is not fully folded. In contrast, Pro-Tk-subtilisin from Thermococcus kodakarensis is fully folded, because it does not require the structural rearrangement upon autoprocessing for the formation of the Ca1 site due to the presence of the insertion sequence IS1 between the propeptide and subtilisin domains. To examine whether the Ca1 site is formed in Pro-subtilisin E by inserting IS1 between the propeptide and subtilisin domains, the Pro-subtilisin E mutant with this insertion, IS1-Pro-subtilisin E, and its active site mutants, IS1-Pro-S221A and IS1-Pro-S221C, were constructed and characterized. The crystal structure of IS1-Pro-S221A revealed that this protein is fully folded and the Ca1 site is formed. In this structure, IS1 serves as a linker that brings the N-terminus of the subtilisin domain near the Ca1 site. IS1-Pro-S221A in a calcium-bound form was more stable than that in a calcium-free form by 13.1 °C. IS1-Pro-S221C was more rapidly autoprocessed than Pro-S221C. These results suggest that IS1 facilitates the formation of the Ca1 site and the complete folding of Pro-subtilisin E and thereby accelerates its autoprocessing.
Asunto(s)
Calcio/metabolismo , Mutagénesis Insercional/genética , Subtilisinas/metabolismo , Thermococcus/enzimología , Bacillus/genética , Bacillus/metabolismo , Secuencia de Bases , Sitios de Unión , Calcio/química , Conformación Proteica , Pliegue de Proteína , Subtilisinas/química , Subtilisinas/genética , Thermococcus/metabolismoRESUMEN
Proteins from thermophiles possess high thermostability. The stabilization mechanisms differ between archaeal and bacterial proteins, whereby archaeal proteins are mainly stabilized via hydrophobic interactions and bacterial proteins by ion pairs. High stability is an important factor in promoting protein evolution, but the precise means by which different stabilization mechanisms affect the evolution process remain unclear. In this study, we investigated a random mutational drift of esterases from thermophilic archaea and bacteria at high temperatures. Our results indicate that mutations in archaeal proteins lead to improved function with no loss of stability, while mutant bacterial proteins are largely destabilized with decreased activity at high temperatures. On the basis of these findings, we suggest that archaeal proteins possess higher "evolvability" than bacterial proteins under temperature selection and are additionally able to evolve into eukaryotic proteins.
Asunto(s)
Proteínas Arqueales/química , Proteínas Bacterianas/química , Evolución Molecular Dirigida , Proteínas Arqueales/genética , Proteínas Bacterianas/genética , Modelos Moleculares , Reacción en Cadena de la Polimerasa , TemperaturaRESUMEN
A goal of protein engineering technology is developing methods to increase protein stability. However, rational design of stable proteins is difficult because the stabilization mechanism of proteins is not fully understood. In this study, we examined the structural dependence of protein stabilization by introducing single amino acid substitution into ribonuclease H1 from the psychotropic bacterium Shewanella oneidensis MR-1 (So-RNase H1), which was our model protein. We performed saturation mutagenesis at various sites. Mutations that stabilized So-RNase H1 were screened using an RNase H-dependent temperature-sensitive Escherchia coli strain. Stabilizing mutations were identified by the suppressor mutagenesis method. This method yielded 39 stabilized mutants from 513 mutations at 27 positions. This suggested that more than 90% of mutations caused destabilization even in a psychotropic protein. However, 17 positions had stabilizing mutations, indicating that the stabilization factors were dispersed over many positions. Interestingly, the identified mutations were distributed mainly at exposed or nonconserved sites. These results provide a novel strategy for protein stabilization.
Asunto(s)
Sustitución de Aminoácidos , Estabilidad Proteica , Ribonucleasa H/química , Ribonucleasa H/genética , Shewanella/enzimología , Escherichia coli/genética , Mutagénesis Sitio-Dirigida , Mutación , Ribonucleasa H/metabolismoRESUMEN
LC11-RNase H1 is a Sulfolobus tokodaii RNase H1 (Sto-RNase H1) homologue isolated by metagenomic approach. In this study, the crystal structure of LC11-RNase H1 in complex with an RNA/DNA substrate was determined. Unlike Bacillus halodurans RNase H1 without hybrid binding domain (HBD) (Bh-RNase HC) and human RNase H1 without HBD (Hs-RNase HC), LC11-RNase H1 interacts with four non-consecutive 2'-OH groups of the RNA strand. The lack of interactions with four consecutive 2'-OH groups leads to a dramatic decrease in the ability of LC11-RNase H1 to cleave the DNA-RNA-DNA/DNA substrate containing four ribonucleotides as compared to those to cleave the substrates containing five and six ribonucleotides. The interaction of LC11-RNase H1 with the DNA strand is also different from those of Bh-RNase HC and Hs-RNase HC. Beside the common phosphate-binding pocket, LC11-RNase H1 has a unique DNA-binding channel. Furthermore, the active-site residues of LC11-RNase H1 are located farther away from the scissile phosphate group than those of Bh-RNase HC and Hs-RNase HC. Modeling of Sto-RNase H1 in complex with the 14bp RNA/DNA substrate, together with the structure-based mutational analyses, suggest that the ability of Sto-RNase H1 to cleave double-stranded RNA is dependent on the local conformation of the basic residues located at the DNA binding site.
Asunto(s)
ADN de Archaea/química , Metagenoma/genética , Modelos Moleculares , Conformación Proteica , ARN de Archaea/química , Ribonucleasa H/química , Sulfolobus/enzimología , Cristalización , ADN de Archaea/metabolismo , Plásmidos/genética , ARN de Archaea/metabolismo , Ribonucleasa H/metabolismo , Difracción de Rayos XRESUMEN
BACKGROUND: Tk-SP is a member of subtilisin-like serine proteases from a hyperthermophilic archaeon Thermococcus kodakarensis. It has been known that the hyper-stable protease, Tk-SP, could exhibit enzymatic activity even at high temperature and in the presence of chemical denaturants. In this work, the enzymatic activity of Tk-SP was measured in the presence of detergents and EDTA. In addition, we focused to demonstrate that Tk-SP could degrade the abnormal prion protein (PrPSc), a protease-resistant isoform of normal prion protein (PrPC). RESULTS: Tk-SP was observed to maintain its proteolytic activity with nonionic surfactants and EDTA at 80°C. We optimized the condition in which Tk-SP functions efficiently, and demonstrated that the enzyme is highly stable in the presence of 0.05% (w/v) nonionic surfactants and 0.01% (w/v) EDTA, retaining up to 80% of its activity. Additionally, we also found that Tk-SP can degrade PrPSc to a level undetectable by western-blot analysis. CONCLUSIONS: Our results indicate that Tk-SP has a great potential for technological applications, such as thermo-stable detergent additives. In addition, it is also suggested that Tk-SP-containing detergents can be developed to decrease the secondary infection risks of transmissible spongiform encephalopathies (TSE).
Asunto(s)
Proteínas Arqueales/metabolismo , Detergentes/química , Priones/metabolismo , Subtilisina/metabolismo , Thermococcus/enzimología , Proteínas Arqueales/química , Proteínas Arqueales/genética , Ácido Edético/química , Escherichia coli/metabolismo , Calor , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Subtilisina/química , Subtilisina/genéticaRESUMEN
A thermoalkalophilic lipase (LIPSBS) from the newly isolated Geobacillus strain SBS-4S which hydrolyzes a wide range of fatty acids has been characterized. In the present study, the crystallization of purified LIPSBS using the sitting-drop vapour-diffusion method and its X-ray diffraction studies are described. The crystals belonged to the orthorhombic space group P212121, with unit-cell parameters a = 55.13, b = 71.75, c = 126.26 Å. The structure was determined at 1.6 Å resolution by the molecular-replacement method using the lipase from G. stearothermophilus L1 as a model.
Asunto(s)
Geobacillus/enzimología , Lipasa/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Terciaria de ProteínaRESUMEN
The unfolding speed of some hyperthermophilic proteins is significantly slower than those of their mesostable homologues. Ribonuclease H2 from the hyperthermophilic archaeon Thermococcus kodakarensis (Tk-RNase H2) is stabilized by its remarkably slow unfolding rate. In this work, we examined the slow unfolding pathway of Tk-RNase H2 by pulse proteolysis using a superstable subtilisin-like serine protease from T. kodakarensis (Tk-subtilisin). Tk-subtilisin has enzymatic activity in highly concentrated guanidine hydrochloride (GdnHCl), in which Tk-RNase H2 unfolds slowly. The native state of Tk-RNase H2 was completely resistant to Tk-subtilisin, whereas the unfolded state (induced by 4 M GdnHCl) was degraded by Tk-subtilisin. Degradation products of Tk-RNase H2 created from pulse proteolysis during its unfolding were detected by tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. We identified the cleavage sites in Tk-RNase H2 by N-terminal sequencing and mass spectrometry and constructed mimics of the unfolding intermediate of Tk-RNase H2 by protein engineering. The mimics were biophysically characterized. We found that the native state of Tk-RNase H2 (N-state) changed to the I(A)-state that was digested by Tk-subtilisin in the early stage of unfolding. In the slow unfolding pathway, the I(A)-state shifted to two intermediate forms, I(B)-state and I(C)-state. The I(B)-state was digested by Tk-subtilisin in the C-terminal region, but the I(C)-state was a Tk-subtilisin resistant form. These states gradually unfolded through the I(D)-state, in which the N-terminal region was digested. The results indicate that pulse proteolysis, by a superstable protease, was a suitable strategy and an effective tool for analyzing intermediate structures of proteins with slow unfolding properties. We also showed that the N-terminal region contributes to the slow unfolding of Tk-RNase H2, and the C-terminal region is important for folding and stability.
Asunto(s)
Desplegamiento Proteico , Ribonucleasa H/química , Dicroismo Circular , Guanidina/farmacología , Cinética , Replegamiento Proteico , Desplegamiento Proteico/efectos de los fármacos , Proteolisis , Subtilisinas/metabolismo , Thermococcus/metabolismoRESUMEN
Tk-subtilisin, a hyperthermostable subtilisin-like serine protease from Thermococcus kodakarensis, matures from the inactive precursor, Pro-Tk-subtilisin (Pro-TKS), upon autoprocessing and degradation of the propeptide (Tkpro). It contains seven Ca(2+) ions. Four of them (Ca2-Ca5) are responsible for folding of Tk-subtilisin. In this study, to clarify the role of the other three Ca(2+) ions (Ca1, Ca6, and Ca7), we constructed Pro-TKS derivatives lacking the Ca1 ion (Pro-TKS/ΔCa1), Ca6 ion (Pro-TKS/ΔCa6), and Ca7 ion (Pro-TKS/ΔCa7), and their active site mutants (Pro-S324A/ΔCa1, Pro-S324A/ΔCa6, and Pro-S324A/ΔCa7, respectively). Pro-TKS/ΔCa6 and Pro-TKS/ΔCa7 fully matured into their active forms upon incubation at 80 °C for 30 min as did Pro-TKS. The mature enzymes were as active as Tk-subtilisin at 80 °C, indicating that the Ca6 and Ca7 ions are not important for activity. In contrast, Pro-TKS/ΔCa1 matured poorly at 80 °C because of the instability of its mature domain. The enzymatic activity of Tk-subtilisin/ΔCa1 was determined to be 50% of that of Tk-subtilisin using the refolded protein. This result suggests that the Ca1 ion is required for the maximal activity of Tk-subtilisin. The refolding rates of all Pro-S324A derivatives were comparable to that of Pro-S324A (active site mutant of Pro-TKS), indicating that these Ca(2+) ions are not needed for folding of Tk-subtilisin. The stabilities of Pro-S324A/ΔCa1 and Pro-S324A/ΔCa6 were decreased by 26.6 and 11.7 °C, respectively, in T(m) compared to that of Pro-S324A. The half-lives of Tk-subtilisin/ΔCa6 and Tk-subtilisin/ΔCa7 at 95 °C were 8- and 4-fold lower than that of Tk-subtilisin, respectively. These results suggest that the Ca1, Ca6, and Ca7 ions, especially the Ca1 ion, contribute to the hyperthermostabilization of Tk-subtilisin.
Asunto(s)
Calcio/metabolismo , Subtilisina/metabolismo , Thermococcus/enzimología , Calcio/química , Pliegue de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Subtilisina/químicaRESUMEN
A serpin homologue (Tk-serpin) from the hyperthermophilic archaeon Thermococcus kodakaraensis was overproduced in E. coli, purified, and characterized. Tk-serpin irreversibly inhibits Tk-subtilisin (TKS) from the same organism with the second-order association rate constants (k(ass)) of 5.2×10³ M⻹ s⻹ at 40°C and 3.1×105 M⻹ s⻹ at 80°C, indicating that Tk-serpin inhibits TKS more strongly at 80°C than at 40°C. It also irreversibly inhibits chymotrypsin, subtilisin Carlsberg, and proteinase K at 40°C with the k(ass) values comparable to that for TKS at 80°C. Casein zymography showed that Tk-serpin inhibits these proteases by forming a SDS-resistant complex, which is typical to inhibitory serpins. The ratio of moles of Tk-serpin needed to inhibit 1 mol of protease (stoichiometry of inhibition, SI) varies from 40 to 80 at 20°C, but decreases to the minimum values of 3-7 as the temperature increases. The inhibitory activities of Tk-serpin for these proteases increase as the stabilities of these proteases decrease, suggesting that a flexibility of the active-site of protease is one of the determinants for susceptibility of protease to inhibition by Tk-serpin. This report showed for the first time that Tk-serpin inhibits both chymotrypsin- and subtilisin-like serine proteases and its inhibitory activity increases as the temperature increases up to 100°C.
Asunto(s)
Proteínas Arqueales/metabolismo , Inhibidores de Serina Proteinasa/metabolismo , Serpinas/metabolismo , Thermococcus/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/farmacología , Secuencia de Bases , Sitios de Unión , Quimotripsina/antagonistas & inhibidores , Cartilla de ADN/genética , Endopeptidasa K/antagonistas & inhibidores , Estabilidad de Enzimas , Escherichia coli/genética , Genes Arqueales , Calor , Cinética , Datos de Secuencia Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Homología de Secuencia de Aminoácido , Inhibidores de Serina Proteinasa/genética , Inhibidores de Serina Proteinasa/farmacología , Serpinas/genética , Serpinas/farmacología , Subtilisinas/antagonistas & inhibidores , Thermococcus/genéticaRESUMEN
The gene encoding a cutinase homolog, LC-cutinase, was cloned from a fosmid library of a leaf-branch compost metagenome by functional screening using tributyrin agar plates. LC-cutinase shows the highest amino acid sequence identity of 59.7% to Thermomonospora curvata lipase. It also shows the 57.4% identity to Thermobifida fusca cutinase. When LC-cutinase without a putative signal peptide was secreted to the periplasm of Escherichia coli cells with the assistance of the pelB leader sequence, more than 50% of the recombinant protein, termed LC-cutinase*, was excreted into the extracellular medium. It was purified and characterized. LC-cutinase* hydrolyzed various fatty acid monoesters with acyl chain lengths of 2 to 18, with a preference for short-chain substrates (C(4) substrate at most) most optimally at pH 8.5 and 50°C, but could not hydrolyze olive oil. It lost activity with half-lives of 40 min at 70°C and 7 min at 80°C. LC-cutinase* had an ability to degrade poly(ε-caprolactone) and polyethylene terephthalate (PET). The specific PET-degrading activity of LC-cutinase* was determined to be 12 mg/h/mg of enzyme (2.7 mg/h/µkat of pNP-butyrate-degrading activity) at pH 8.0 and 50°C. This activity is higher than those of the bacterial and fungal cutinases reported thus far, suggesting that LC-cutinase* not only serves as a good model for understanding the molecular mechanism of PET-degrading enzyme but also is potentially applicable for surface modification and degradation of PET.
Asunto(s)
Hidrolasas de Éster Carboxílico/aislamiento & purificación , Hidrolasas de Éster Carboxílico/metabolismo , Metagenoma , Tereftalatos Polietilenos/metabolismo , Microbiología del Suelo , Suelo , Hidrolasas de Éster Carboxílico/química , Estabilidad de Enzimas , Escherichia coli/genética , Ácidos Grasos/metabolismo , Biblioteca de Genes , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , TemperaturaRESUMEN
A strictly aerobic, Gram-negative, yellow-pigmented, non-spore-forming rod, designated 15C3(T), was isolated from aerobic leaf-and-branch compost at EXPO Park in Osaka, Japan. Growth was observed at 9-33 °C (optimum 25 °C) and pH 5.6-7.9 (optimum pH 6.1-7.0). No growth occurred with >2% (w/v) NaCl. Strain 15C3(T) reduced nitrate to nitrogen and showed catalase activity but not oxidase activity. The predominant fatty acids were iso-C(15:0), iso-C(17:0) 3-OH and summed feature 3 (comprising C(16:1)ω7c and/or iso-C(15:0) 2-OH). The isolate contained phosphatidylethanolamine as the major polar lipid and menaquinone-6 as the major respiratory quinone. The G+C content of the genomic DNA of strain 15C3(T) was 33.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 15C3(T) belonged to the genus Flavobacterium and was most closely related to Flavobacterium hercynium WB 4.2-33(T) (96.9% sequence similarity). On the basis of phenotypic and phylogenetic distinctiveness, strain 15C3(T) is considered to represent a novel species in the genus Flavobacterium, for which the name Flavobacterium compostarboris sp. nov. is proposed. The type strain is 15C3(T) (â=âKACC 14224(T) â=âJCM 16527(T)). Emended descriptions of F. hercynium, Flavobacterium resistens and Flavobacterium johnsoniae are also given.
Asunto(s)
Flavobacterium/clasificación , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Flavobacterium/genética , Flavobacterium/aislamiento & purificación , Japón , Datos de Secuencia Molecular , Fenotipo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , SueloRESUMEN
Tk-subtilisin from the hyperthermophilic archaeon Thermococcus kodakarensis matures from Pro-Tk-subtilisin (Pro-TKS) upon autoprocessing and degradation of propeptide. Pro-TKS contains the insertion sequence (IS1) at the N-terminus of the mature domain as compared to bacterial pro-subtilisins. To analyze the role of IS1, the Pro-TKS derivative without IS1 (∆IS1-Pro-TKS) and its active-site mutants (∆IS1-Pro-S324A and ∆IS1-Pro-S324C) were constructed and characterized. ∆IS1-Pro-S324A and ∆IS1-Pro-TKS represent an unautoprocessed and autoprocessed form of ∆IS1-Pro-TKS, respectively. The CD and ANS fluorescence spectra of these proteins indicate that folding of ∆IS1-Pro-TKS is not completed by binding of Ca(2+) ions but is completed by the subsequent autoprocessing reaction. Thermal denaturation of these proteins analyzed by DSC and CD spectroscopy indicates that unautoprocessed ∆IS1-Pro-TKS is less stable than autoprocessed ∆IS1-Pro-TKS by 26.3 °C in T (m). The stability of autoprocessed ∆IS1-Pro-TKS is comparable to that of Pro-TKS, which is slightly lower than that of unautoprocessed Pro-TKS. These results suggest that ∆IS1-Pro-TKS is fully folded and greatly stabilized by autoprocessing. ∆IS1-Pro-TKS more slowly matured to ∆IS1-Tk-subtilisin than Pro-TKS did, due to a decrease in the autoprocessing rate. We propose that IS1 is required not only for hyperstabilization of Pro-TKS but also for its rapid maturation.
Asunto(s)
Adaptación Biológica , Proteínas Arqueales/química , Precursores Enzimáticos/química , Calor , Fragmentos de Péptidos/química , Subtilisinas/química , Thermococcus/enzimología , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Calcio/metabolismo , Dominio Catalítico , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Datos de Secuencia Molecular , Mutagénesis Insercional , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Desnaturalización Proteica , Estabilidad Proteica , Subtilisinas/genética , Subtilisinas/metabolismoRESUMEN
A double mutant of Escherichia coli acetyl esterase (EcAE) with enhanced enzymatic activity was obtained by random mutagenesis using error-prone PCR and screening for enzymatic activity by observing halo formation on a tributyrin plate. The mutant contained Leu97Phe (L97F) and Leu209Phe (L209F) mutations. Single mutants L97F and L209F were also constructed and analyzed for kinetic parameters, as well as double mutant L97F/L209F. Kinetic analysis using p-nitrophenyl butyrate as substrate indicated that the k(cat) values of L97F and L97F/L209F were larger than that of the wild-type enzyme, by 8.3-fold and 12-fold respectively, whereas no significant change was observed in the k(cat) value of L209F. The K(m) values of L209F and L97F/L209F were smaller than that of the wild-type enzyme, by 2.9-fold and 2.4-fold respectively, whereas no significant change was observed in the K(m) value of L97F. These results indicate that a combination of an increase in k(cat) values due to the L97F mutation and a decrease in K(m) value due to the L209F mutation renders the k(cat)/K(m) value of the double mutant enzyme 29-fold higher than that of the wild-type enzyme.
Asunto(s)
Acetilesterasa/genética , Acetilesterasa/metabolismo , Escherichia coli/enzimología , Mutagénesis , Mutación , Ingeniería de Proteínas/métodos , Acetilesterasa/química , Estabilidad de Enzimas , Cinética , Modelos Moleculares , Conformación Proteica , TemperaturaRESUMEN
CutA1 is widely found in bacteria, plants and animals, including humans. The functions of CutA1, however, have not been well clarified. It is known that CutA1s from Pyrococcus horikoshii, Thermus thermophilus and Oryza sativa unfold at temperatures remarkably higher than the growth temperatures of the host organisms. In this work the crystal structure of CutA1 from the psychrotrophic bacterium Shewanella sp. SIB1 (SIB1-CutA1) in a trimeric form was determined at 2.7â Å resolution. This is the first crystal structure of a psychrotrophic CutA1. The overall structure of SIB1-CutA1 is similar to those of CutA1 from Homo sapiens, Escherichia coli, Pyrococcus horikoshii, Thermus thermophilus, Termotoga maritima, Oryza sativa and Rattus norvergicus. A peculiarity is observed in the ß2 strand. The ß2 strand is divided into two short ß strands, ß2a and ß2b, in SIB1-CutA1. A thermal denaturation experiment revealed that SIB1-CutA1 does not unfold completely at 363â K at pH 7.0, although Shewanella sp. SIB1 cannot grow at temperatures exceeding 303â K. These results indicate that the trimeric structural motif of CutA1 is the critical factor in its unusually high stability and suggest that CutA1 needs to maintain its high stability in order to function, even in psychrotrophs.