Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Diagnostics (Basel) ; 14(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38786297

RESUMEN

The objective of this study was to compare the results of the measurements made using two methods for determining the retromolar eruption spaces and the mesiodistal inclinations of impacted mandibular third molars. These are the main parameters based on which the eruption of these teeth can be predicted. A Sirona GALILEOS Compact/Comfort CBCT scanner was used for the study. A total of 127 patients were included in the study. We made the measurements using our integrated method and the standard method used in the dental practice for determining the eruption space and the mesiodistal inclination of these teeth, and then we compared the results. The mean difference between the two methods for estimating the retromolar space deficiency on the left was 1.70 mm and standard deviation (SD) 2.95; mean error of the mean was 0.29; and Student t-test (paired t-test) = 5.86, significant level of the correlation was 0.001, <0.05. Regarding the teeth on the right, it was mean 1.59 mm and standard deviation (SD) 2.98; mean error of the mean was 0.31. The t-test performed found a statistically significant difference between the methods in determining the retromolar eruption spaces (t-test (paired t-test) = 5.13; significant level of the correlation 0.001; p < 0.05). The mean difference (in degrees) between the measurements of the inclinations of the teeth on the left using the two methods was 3, 50°; SD = 7.25; mean error of the mean = 1.81; t-test = 2.481; significant level of the correlation 0.025; and p > 0.05. As for the teeth on the right, it was 2.41°, SD = 9.57, mean error of the mean = 2.39, t-test 0.175, significant level of the correlation = 0.863, and >0.05. No statistically significant difference was found between the two methods in measuring the inclinations of impacted third molars. The conclusion of our study is that the determination of the mesiodistal inclination of the teeth and the available eruption space using the method developed by us is more accurate compared to the standard method, because constant points and planes are used. This method allows for predicting the eruption of impacted mandibular third molars.

2.
Folia Med (Plovdiv) ; 65(6): 993-999, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38351790

RESUMEN

INTRODUCTION: Various rotary and mechanical instruments are used in conventional oral surgery for osteotomies. Despite the implementation of effective cooling systems, it is difficult to prevent thermal damage to the adjacent bone caused by heat generated during the procedure. A smear layer forms on the surface, which can impede the interaction of blood elements with the underlying tissue, resulting in a delayed healing process.


Asunto(s)
Implantes Dentales , Láseres de Estado Sólido , Microscopía Electrónica de Rastreo , Cicatrización de Heridas , Calor
3.
J Funct Biomater ; 14(7)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37504871

RESUMEN

The placement of dental screw implants typically involves the use of rotary techniques and drills to create a bone bed. This study explores the potential benefits of combining this method with an Er:YAG laser. Split osteotomies were performed on 10 jaws of euthanized domestic pigs (Sus scrofa domestica), with 12 mandibular implant osteotomies in each jaw, divided into 4 groups. In order to make a comprehensive assessment of the effect of Er:YAG lasers, histomorphological techniques were used to measure the reduction in amorphous layer thickness after Er:YAG laser treatment, both with and without the placement of dental screw implants from different manufacturers. Following bone decalcification and staining, the thickness of the amorphous layer was measured in four groups: Group A-osteotomy performed without Er:YAG laser treatment-had amorphous layer thicknesses ranging from 21.813 to 222.13 µm; Group B-osteotomy performed with Er:YAG laser treatment-had amorphous layer thicknesses ranging from 6.08 to 64.64 µm; Group C-an implant placed in the bone without laser treatment-had amorphous layer thicknesses of 5.90 to 54.52 µm; and Group D-an implant placed after bone treatment with Er:YAG laser-had amorphous layer thicknesses of 1.29 to 7.98 µm. The examination and photomicrodocumentation was performed using a LEICA DM1000 LED microscope (Germany) and LAS V 4.8 software (Leica Application Suite V4, Leica Microsystems, Germany). When comparing group A to group B and group C to D, statistically significant differences were indicated (p-value = 0.000, p < 0.05). The study demonstrates the synergistic effects and the possibility of integrating lasers into the conventional implantation protocol. By applying our own method of biomodification, the smear layer formed during rotary osteotomy can be reduced using Er:YAG lasers. This reduction leads to a narrower peri-implant space and improved bone-to-implant contact, facilitating accelerated osseointegration.

4.
Folia Med (Plovdiv) ; 64(1): 162-168, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35851896

RESUMEN

We present some clinical cases of autogenous tooth graft - a modern method in which the extracted teeth are processed into a demineralised dentin matrix (DDM) and are then immediately transplanted into the post-extraction sockets or bone defects.


Asunto(s)
Regeneración Ósea , Diente , Dentina , Cara , Humanos , Extracción Dental
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda