Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Bioconjug Chem ; 27(10): 2431-2440, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27633934

RESUMEN

Nucleotide analogues are a therapeutic class that is very promising and currently used in clinics, notably against viral infectious diseases and cancer. However, their therapeutic potential is often restricted by a poor stability in vivo, the induction of severe side effects, and limited passive intracellular diffusion due to their hydrophilicity. Polysaccharide-based polymers (e.g., starch) have considerable advantages, including a lack of toxicity and the absence of antigenicity. The aim of this study was to develop new cationic starches able to form complexes with nucleotide analogues, thus protecting them and increasing their cell uptake. At the same time, the material should demonstrate good biocompatibility and low cytotoxicity. Different polyamines, (TREN, TEPA, and spermine) were grafted to starch to evaluate the impact of side-chain properties. The resulting cationic starch derivatives were characterized (e.g., degree of modification) and compared in their ability to form polyplexes with ATP as a model nucleotide. Among the tested candidates, the formulation of starch-TEPA and ATP with an N/P ratio of 2 led to nanoparticles with a size of 429 nm, a PdI of 0.054, and a ζ potential of -9 mV. MTT and LDH assays on A549 cell line showed low toxicity for this polymer. Confocal microscopy study proved that the cell internalization was an incubation-time- and energy-dependent process. Most important, starch-TEPA complexed with ddGTP showed significant biological activity on A549 cancer cells compared to that of plain ddGTP at the same concentration.

2.
J Control Release ; 266: 140-155, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-28951319

RESUMEN

The combination of pharmaceutical technologies can be a wise choice for developing innovative therapeutic strategies. The association of nanocarriers and gels provides new therapeutic possibilities due to the combined properties of the two technologies. Gels support the nanocarriers, localize their administration to the target tissue, and sustain their release. In addition to the properties afforded by the gel, nanocarriers can provide additional drug sustained release or different pharmacokinetic and biodistribution profiles than those from nanocarriers administered by the conventional route to improve the drug therapeutic index. This review focuses on recent (over the last ten years) in vivo data showing the advances and advantages of using nanocarrier-loaded gels. Liposomes, micelles, liquid and solid lipid nanocapsules, polymeric nanoparticles, dendrimers, and fullerenes are all nanotechnologies which have been recently assessed for medical applications, such as cancer therapy, the treatment of cutaneous and infectious diseases, anesthesia, the administration of antidepressants, and the treatment of unexpected diseases, such as alopecia.


Asunto(s)
Portadores de Fármacos/administración & dosificación , Nanopartículas/administración & dosificación , Animales , Dendrímeros/administración & dosificación , Fulerenos/administración & dosificación , Geles , Humanos , Micelas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda