Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cell ; 186(16): 3350-3367.e19, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37421950

RESUMEN

Synucleinopathies are characterized by the accumulation of α-synuclein (α-Syn) aggregates in the brain. Positron emission tomography (PET) imaging of synucleinopathies requires radiopharmaceuticals that selectively bind α-Syn deposits. We report the identification of a brain permeable and rapid washout PET tracer [18F]-F0502B, which shows high binding affinity for α-Syn, but not for Aß or Tau fibrils, and preferential binding to α-Syn aggregates in the brain sections. Employing several cycles of counter screenings with in vitro fibrils, intraneuronal aggregates, and neurodegenerative disease brain sections from several mice models and human subjects, [18F]-F0502B images α-Syn deposits in the brains of mouse and non-human primate PD models. We further determined the atomic structure of the α-Syn fibril-F0502B complex by cryo-EM and revealed parallel diagonal stacking of F0502B on the fibril surface through an intense noncovalent bonding network via inter-ligand interactions. Therefore, [18F]-F0502B is a promising lead compound for imaging aggregated α-Syn in synucleinopathies.


Asunto(s)
Enfermedades Neurodegenerativas , Sinucleinopatías , Animales , Humanos , alfa-Sinucleína/metabolismo , Sinucleinopatías/diagnóstico por imagen , Sinucleinopatías/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Tomografía de Emisión de Positrones , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
2.
Nature ; 603(7901): 470-476, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35236988

RESUMEN

Alzheimer's disease has a higher incidence in older women, with a spike in cognitive decline that tracks with visceral adiposity, dysregulated energy homeostasis and bone loss during the menopausal transition1,2. Inhibiting the action of follicle-stimulating hormone (FSH) reduces body fat, enhances thermogenesis, increases bone mass and lowers serum cholesterol in mice3-7. Here we show that FSH acts directly on hippocampal and cortical neurons to accelerate amyloid-ß and Tau deposition and impair cognition in mice displaying features of Alzheimer's disease. Blocking FSH action in these mice abrogates the Alzheimer's disease-like phenotype by inhibiting the neuronal C/EBPß-δ-secretase pathway. These data not only suggest a causal role for rising serum FSH levels in the exaggerated Alzheimer's disease pathophysiology during menopause, but also reveal an opportunity for treating Alzheimer's disease, obesity, osteoporosis and dyslipidaemia with a single FSH-blocking agent.


Asunto(s)
Enfermedad de Alzheimer , Hormona Folículo Estimulante , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Densidad Ósea , Cognición , Femenino , Hormona Folículo Estimulante/metabolismo , Humanos , Ratones , Termogénesis
3.
EMBO J ; 40(17): e106320, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34260075

RESUMEN

Inflammation plays an important role in the pathogenesis of Alzheimer's disease (AD). Some evidence suggests that misfolded protein aggregates found in AD brains may have originated from the gut, but the mechanism underlying this phenomenon is not fully understood. C/EBPß/δ-secretase signaling in the colon was investigated in a 3xTg AD mouse model in an age-dependent manner. We applied chronic administration of 1% dextran sodium sulfate (DSS) to trigger gut leakage or colonic injection of Aß or Tau fibrils or AD patient brain lysates in 3xTg mice and combined it with excision/cutting of the gut-brain connecting vagus nerve (vagotomy), in order to explore the role of the gut-brain axis in the development of AD-like pathologies and to monitor C/EBPß/δ-secretase signaling under those conditions. We found that C/EBPß/δ-secretase signaling is temporally activated in the gut of AD patients and 3xTg mice, initiating formation of Aß and Tau fibrils that spread to the brain. DSS treatment promotes gut leakage and facilitates AD-like pathologies in both the gut and the brain of 3xTg mice in a C/EBPß/δ-secretase-dependent manner. Vagotomy selectively blunts this signaling, attenuates Aß and Tau pathologies, and restores learning and memory. Aß or Tau fibrils or AD patient brain lysates injected into the colon propagate from the gut into the brain via the vagus nerve, triggering AD pathology and cognitive dysfunction. The results indicate that inflammation activates C/EBPß/δ-secretase and initiates AD-associated pathologies in the gut, which are subsequently transmitted to the brain via the vagus nerve.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Colitis/metabolismo , Colon/metabolismo , Proteínas tau/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Cisteína Endopeptidasas/metabolismo , Ratones , Ratones Endogámicos C57BL
4.
EMBO J ; 40(3): e105537, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33351190

RESUMEN

The netrin-1/DCC ligand/receptor pair has key roles in central nervous system (CNS) development, mediating axonal, and neuronal navigation. Although expression of netrin-1 and DCC is maintained in the adult brain, little is known about their role in mature neurons. Notably, netrin-1 is highly expressed in the adult substantia nigra, leading us to investigate a role of the netrin-1/DCC pair in adult nigral neuron fate. Here, we show that silencing netrin-1 in the adult substantia nigra of mice induces DCC cleavage and a significant loss of dopamine neurons, resulting in motor deficits. Because loss of adult dopamine neurons and motor impairments are features of Parkinson's disease (PD), we studied the potential impact of netrin-1 in different animal models of PD. We demonstrate that both overexpression of netrin-1 and brain administration of recombinant netrin-1 are neuroprotective and neurorestorative in mouse and rat models of PD. Of interest, we observed that netrin-1 levels are significantly reduced in PD patient brain samples. These results highlight the key role of netrin-1 in adult dopamine neuron fate, and the therapeutic potential of targeting netrin-1 signaling in PD.


Asunto(s)
Receptor DCC/metabolismo , Netrina-1/genética , Netrina-1/metabolismo , Enfermedad de Parkinson/genética , Sustancia Negra/citología , Animales , Muerte Celular , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Regulación hacia Abajo , Femenino , Silenciador del Gen , Humanos , Masculino , Ratones , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Ratas , Transducción de Señal , Sustancia Negra/metabolismo
5.
Mol Psychiatry ; 28(3): 1337-1350, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36543925

RESUMEN

Gut dysbiosis contributes to Parkinson's disease (PD) pathogenesis. Gastrointestinal disturbances in PD patients, along with gut leakage and intestinal inflammation, take place long before motor disorders. However, it remains unknown what bacterial species in gut microbiomes play the key role in driving PD pathogenesis. Here we show that Helicobacter hepaticus (H. hepaticus), abundant in gut microbiota from rotenone-treated human α-Synuclein gene (SNCA) transgenic mice and PD patients, initiates α-Synuclein pathology and motor deficits in an AEP-dependent manner in SNCA mice. Chronic Dextran sodium sulfate (DSS) treatment, an inflammatory inducer in the gut, activates AEP (asparagine endopeptidase) that cleaves α-Synuclein N103 and triggers its aggregation, promoting inflammation in the gut and the brain and motor defects in SNCA mice. PD fecal microbiota transplant or live H. hepaticus administration into antibiotics cocktail (Abx)-pretreated SNCA mice induces α-Synuclein pathology, inflammation in the gut and brain, and motor dysfunctions, for which AEP is indispensable. Hence, Helicobacter hepaticus enriched in PD gut microbiomes may facilitate α-Synuclein pathologies and motor impairments via activating AEP.


Asunto(s)
Trastornos Motores , Enfermedad de Parkinson , Ratones , Humanos , Animales , Enfermedad de Parkinson/genética , alfa-Sinucleína , Helicobacter hepaticus , Ratones Transgénicos , Dopamina , Inflamación
6.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34140411

RESUMEN

The molecular mechanism of Alzheimer's disease (AD) pathogenesis remains obscure. Life and/or environmental events, such as traumatic brain injury (TBI), high-fat diet (HFD), and chronic cerebral hypoperfusion (CCH), are proposed exogenous risk factors for AD. BDNF/TrkB, an essential neurotrophic signaling for synaptic plasticity and neuronal survival, are reduced in the aged brain and in AD patients. Here, we show that environmental factors activate C/EBPß, an inflammatory transcription factor, which subsequently up-regulates δ-secretase that simultaneously cleaves both APP and Tau, triggering AD neuropathological changes. These adverse effects are additively exacerbated in BDNF+/- or TrkB+/- mice. Strikingly, TBI provokes both senile plaque deposit and neurofibrillary tangles (NFT) formation in TrkB+/- mice, associated with augmented neuroinflammation and extensive neuronal loss, leading to cognitive deficits. Depletion of C/EBPß inhibits TBI-induced AD-like pathologies in these mice. Remarkably, amyloid aggregates and NFT are tempospatially distributed in TrkB+/- mice brains after TBI, providing insight into their spreading in the progression of AD-like pathologies. Hence, our study revealed the roles of exogenous (TBI, HFD, and CCH) and endogenous (TrkB/BDNF) risk factors in the onset of AD-associated pathologies.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Progresión de la Enfermedad , Ambiente , Factores de Crecimiento Nervioso/metabolismo , Transducción de Señal , Envejecimiento/metabolismo , Enfermedad de Alzheimer/complicaciones , Amiloide/metabolismo , Animales , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/patología , Cisteína Endopeptidasas/metabolismo , Dieta Alta en Grasa , Humanos , Ratones Endogámicos C57BL , Ovillos Neurofibrilares/patología , Placa Amiloide/patología , Receptor trkB/metabolismo , Factores de Riesgo
7.
Eur J Neurosci ; 58(6): 3555-3568, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37608574

RESUMEN

Limited axon regeneration following peripheral nerve injury may be related to activation of the lysosomal protease, asparaginyl endopeptidase (AEP, δ-secretase) and its degradation of the microtubule associated protein, Tau. Activity of AEP was increased at the site of sciatic nerve transection and repair but blocked in mice treated systemically with a specific AEP inhibitor, compound 11 (CP11). Treatments with CP11 enhanced axon regeneration in vivo. Amplitudes of compound muscle action potentials recorded 4 weeks after nerve transection and repair and 2 weeks after daily treatments with CP11 were double those of vehicle-treated mice. At that time after injury, axons of significantly more motor and sensory neurons had regenerated successfully and reinnervated the tibialis anterior and gastrocnemius muscles in CP11-treated mice than vehicle-treated controls. In cultured adult dorsal root ganglion neurons derived from wild type mice that were treated in vitro for 24 h with CP11, neurites were nearly 50% longer than in vehicle-treated controls and similar to neurite lengths in cultures treated with the TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF). Combined treatment with CP11 and 7,8-DHF did not enhance outgrowth more than treatments with either one alone. Enhanced neurite outgrowth produced by CP11 was found also in the presence of the TrkB inhibitor, ANA-12, indicating that the enhancement was independent of TrkB signalling. Longer neurites were found after CP11 treatment in both TrkB+ and TrkB- neurons. Delta secretase inhibition by CP11 is a treatment for peripheral nerve injury with great potential.


Asunto(s)
Axones , Traumatismos de los Nervios Periféricos , Animales , Ratones , Secretasas de la Proteína Precursora del Amiloide , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Regeneración Nerviosa , Neuritas
8.
Mol Psychiatry ; 27(8): 3396-3409, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35546632

RESUMEN

Diabetes is a risk factor for Alzheimer's disease (AD), which is also called type 3 diabetes with insulin reduction and insulin resistance in AD patient brains. However, the molecular mechanism coupling diabetes to AD onset remains incompletely understood. Here we show that inflammation, associated with obesity and diabetes elicited by high-fat diet (HFD), activates neuronal C/EBPß/AEP signaling that drives AD pathologies and cognitive disorders. HFD stimulates diabetes and insulin resistance in neuronal Thy1-C/EBPß transgenic (Tg) mice, accompanied with prominent mouse Aß accumulation and hyperphosphorylated Tau aggregation in the brain, triggering cognitive deficits. These effects are profoundly diminished when AEP is deleted from C/EBPß Tg mice. Chronic treatment with inflammatory lipopolysaccharide (LPS) facilitates AD pathologies and cognitive disorders in C/EBPß Tg but not in wild-type mice, and these deleterious effects were substantially alleviated in C/EBPß Tg/AEP -/- mice. Remarkably, the anti-inflammatory drug aspirin strongly attenuates HFD-induced diabetes and AD pathologies in neuronal C/EBPß Tg mice. Therefore, our findings demonstrate that inflammation-activated neuronal C/EBPß/AEP signaling couples diabetes to AD.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus , Resistencia a la Insulina , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina/fisiología , Ratones Transgénicos , Inflamación/metabolismo , Encéfalo/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Diabetes Mellitus/metabolismo , Modelos Animales de Enfermedad
9.
Proc Natl Acad Sci U S A ; 117(39): 24503-24513, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32929029

RESUMEN

The Hippo (MST1/2) pathway plays a critical role in restricting tissue growth in adults and modulating cell proliferation, differentiation, and migration in developing organs. Netrin1, a secreted laminin-related protein, is essential for nervous system development. However, the mechanisms underlying MST1 regulation by the extrinsic signals remain unclear. Here, we demonstrate that Netrin1 reduction in Parkinson's disease (PD) activates MST1, which selectively binds and phosphorylates netrin receptor UNC5B on T428 residue, promoting its apoptotic activation and dopaminergic neuronal loss. Netrin1 deprivation stimulates MST1 activation and interaction with UNC5B, diminishing YAP levels and escalating cell deaths. Knockout of UNC5B abolishes netrin depletion-induced dopaminergic loss, whereas blockade of MST1 phosphorylating UNC5B suppresses neuronal apoptosis. Remarkably, Netrin1 is reduced in PD patient brains, associated with MST1 activation and UNC5B T428 phosphorylation, which is accompanied by YAP reduction and apoptotic activation. Hence, Netrin1 regulates Hippo (MST1) pathway in dopaminergic neuronal loss in PD via UNC5B receptor.


Asunto(s)
Apoptosis , Neuronas Dopaminérgicas/citología , Receptores de Netrina/metabolismo , Netrina-1/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencias de Aminoácidos , Animales , Línea Celular , Proliferación Celular , Neuronas Dopaminérgicas/metabolismo , Humanos , Ratones , Ratones Noqueados , Receptores de Netrina/química , Receptores de Netrina/genética , Netrina-1/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/fisiopatología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética
10.
EMBO J ; 37(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29769405

RESUMEN

Dopaminergic neurodegeneration in Parkinson's disease (PD) is associated with abnormal dopamine metabolism by MAO-B (monoamine oxidase-B) and intracellular α-Synuclein (α-Syn) aggregates, called the Lewy body. However, the molecular relationship between α-Syn and MAO-B remains unclear. Here, we show that α-Syn directly binds to MAO-B and stimulates its enzymatic activity, which triggers AEP (asparagine endopeptidase; legumain) activation and subsequent α-Syn cleavage at N103, leading to dopaminergic neurodegeneration. Interestingly, the dopamine metabolite, DOPAL, strongly activates AEP, and the N103 fragment of α-Syn binds and activates MAO-B. Accordingly, overexpression of AEP in SNCA transgenic mice elicits α-Syn N103 cleavage and accelerates PD pathogenesis, and inhibition of MAO-B by Rasagiline diminishes α-Syn-mediated PD pathology and motor dysfunction. Moreover, virally mediated expression of α-Syn N103 induces PD pathogenesis in wild-type, but not MAO-B-null mice. Our findings thus support that AEP-mediated cleavage of α-Syn at N103 is required for the association and activation of MAO-B, mediating PD pathogenesis.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Monoaminooxidasa/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animales , Cisteína Endopeptidasas/genética , Modelos Animales de Enfermedad , Dopamina/genética , Dopamina/metabolismo , Indanos/farmacología , Ratones , Ratones Transgénicos , Monoaminooxidasa/genética , Inhibidores de la Monoaminooxidasa/farmacología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , alfa-Sinucleína/genética
11.
Mol Psychiatry ; 26(12): 7838-7850, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34489530

RESUMEN

Respiratory chain complex I deficiency elicits mitochondrial dysfunction and reactive oxidative species (ROS), which plays a crucial role in Parkinson's disease (PD) pathogenesis. However, it remains unclear whether the impairment in other complexes in the mitochondrial oxidative phosphorylation chain is also sufficient to trigger PD onset. Here we show that inhibition of Complex II or III in the electron transport chain (ETC) induces the motor disorder and PD pathologies in neuronal Thy1-C/EBPß transgenic mice. Through a cell-based screening of mitochondrial respiratory chain inhibitors, we identified TTFA (complex II inhibitor) and Atovaquone (complex III inhibitor), which robustly block the oxidative phosphorylation functions, strongly escalate ROS, and activate C/EBPß/AEP pathway that triggers dopaminergic neuronal cell death. Oral administration of these inhibitors to Thy1-C/EBPß mice elicits constipation and motor defects, associated with Lewy body-like inclusions. Deletion of SDHD (Succinate dehydrogenase) gene from the complex II in the Substantia Nigra of Thy1-C/EBPß mice triggers ROS and PD pathologies, resulting in motor disorders. Hence, our findings demonstrate that mitochondrial ETC inactivation triggers PD pathogenesis via activating C/EBPß/AEP pathway.


Asunto(s)
Enfermedad de Parkinson , Animales , Neuronas Dopaminérgicas/metabolismo , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Sustancia Negra/patología
12.
Mol Psychiatry ; 26(2): 586-603, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-30382187

RESUMEN

δ-Secretase, an age-dependent asparagine protease, cleaves both amyloid precursor protein (APP) and Tau and is required for amyloid plaque and neurofibrillary tangle pathologies in Alzheimer's disease (AD). However, whether δ-secretase activation is sufficient to trigger AD pathogenesis remains unknown. Here we show that the fragments of δ-secretase-cleavage, APP (586-695) and Tau(1-368), additively drive AD pathogenesis and cognitive dysfunctions. Tau(1-368) strongly augments BACE1 expression and Aß generation in the presence of APP. The Tau(1-368) fragment is more robust than full-length Tau in binding active STAT1, a BACE1 transcription factor, and promotes its nuclear translocation, upregulating BACE1 and Aß production. Notably, Aß-activated SGK1 or JAK2 kinase phosphorylates STAT1 and induces its association with Tau(1-368). Inhibition of these kinases diminishes stimulatory effect of Tau(1-368). Knockout of STAT1 abolishes AD pathologies induced by δ-secretase-generated APP and Tau fragments. Thus, we show that Tau may not only be a downstream effector of Aß in the amyloid hypothesis, but also act as a driving force for Aß, when cleaved by δ-secretase.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Humanos , Ovillos Neurofibrilares , Factor de Transcripción STAT1 , Proteínas tau/metabolismo
13.
Brain ; 144(6): 1833-1852, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33880508

RESUMEN

Amyloid-ß precursor protein (APP) is sequentially cleaved by secretases and generates amyloid-ß, the major components in senile plaques in Alzheimer's disease. APP is upregulated in human Alzheimer's disease brains. However, the molecular mechanism of how APP contributes to Alzheimer's disease pathogenesis remains incompletely understood. Here we show that truncated APP C586-695 fragment generated by δ-secretase directly binds to CCAAT/enhancer-binding protein beta (CEBPB), an inflammatory transcription factor, and enhances its transcriptional activity, escalating Alzheimer's disease-related gene expression and pathogenesis. The APP C586-695 fragment, but not full-length APP, strongly associates with CEBPB and elicits its nuclear translocation and augments the transcriptional activities on APP itself, MAPT (microtubule-associated protein tau), δ-secretase and inflammatory cytokine mRNA expression, finally triggering Alzheimer's disease pathology and cognitive disorder in a viral overexpression mouse model. Blockade of δ-secretase cleavage of APP by mutating the cleavage sites reduces its stimulatory effect on CEBPB, alleviating amyloid pathology and cognitive dysfunctions. Clearance of APP C586-695 from 5xFAD mice by antibody administration mitigates Alzheimer's disease pathologies and restores cognitive functions. Thus, in addition to the sequestration of amyloid-ß, APP implicates in Alzheimer's disease pathology by activating CEBPB upon δ-secretase cleavage.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Regulación de la Expresión Génica/fisiología , Anciano , Animales , Cisteína Endopeptidasas/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad
14.
Acta Neuropathol ; 142(1): 139-158, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33895869

RESUMEN

ApoE4 enhances Tau neurotoxicity and promotes the early onset of AD. Pretangle Tau in the noradrenergic locus coeruleus (LC) is the earliest detectable AD-like pathology in the human brain. However, a direct relationship between ApoE4 and Tau in the LC has not been identified. Here we show that ApoE4 selectively binds to the vesicular monoamine transporter 2 (VMAT2) and inhibits neurotransmitter uptake. The exclusion of norepinephrine (NE) from synaptic vesicles leads to its oxidation into the toxic metabolite 3,4-dihydroxyphenyl glycolaldehyde (DOPEGAL), which subsequently activates cleavage of Tau at N368 by asparagine endopeptidase (AEP) and triggers LC neurodegeneration. Our data reveal that ApoE4 boosts Tau neurotoxicity via VMAT2 inhibition, reduces hippocampal volume, and induces cognitive dysfunction in an AEP- and Tau N368-dependent manner, while conversely ApoE3 binds Tau and protects it from cleavage. Thus, ApoE4 exacerbates Tau neurotoxicity by increasing VMAT2 vesicle leakage and facilitating AEP-mediated Tau proteolytic cleavage in the LC via DOPEGAL.


Asunto(s)
Enfermedad de Alzheimer/patología , Apolipoproteína E4/farmacología , Locus Coeruleus/patología , Tauopatías/patología , Proteínas de Transporte Vesicular de Monoaminas/antagonistas & inhibidores , Acetaldehído/análogos & derivados , Acetaldehído/metabolismo , Anciano , Enfermedad de Alzheimer/psicología , Animales , Trastornos del Conocimiento/psicología , Femenino , Hipocampo/patología , Humanos , Locus Coeruleus/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Ovillos Neurofibrilares/patología , Norepinefrina/metabolismo , Vesículas Sinápticas/metabolismo , Tauopatías/psicología
15.
Proc Natl Acad Sci U S A ; 115(3): 578-583, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29295929

RESUMEN

The BDNF mimetic compound 7,8-dihydroxyflavone (7,8-DHF), a potent small molecular TrkB agonist, displays prominent therapeutic efficacy against Alzheimer's disease (AD). However, 7,8-DHF has only modest oral bioavailability and a moderate pharmacokinetic (PK) profile. To alleviate these preclinical obstacles, we used a prodrug strategy for elevating 7,8-DHF oral bioavailability and brain exposure, and found that the optimal prodrug R13 has favorable properties and dose-dependently reverses the cognitive defects in an AD mouse model. We synthesized a large number of 7,8-DHF derivatives via ester or carbamate group modification on the catechol ring in the parent compound. Using in vitro absorption, distribution, metabolism, and excretion assays, combined with in vivo PK studies, we identified a prodrug, R13, that prominently up-regulates 7,8-DHF PK profiles. Chronic oral administration of R13 activated TrkB signaling and prevented Aß deposition in 5XFAD AD mice, inhibiting the pathological cleavage of APP and Tau by AEP. Moreover, R13 inhibited the loss of hippocampal synapses and ameliorated memory deficits in a dose-dependent manner. These results suggest that the prodrug R13 is an optimal therapeutic agent for treating AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Flavonas/administración & dosificación , Profármacos/administración & dosificación , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Flavonas/síntesis química , Flavonas/química , Flavonas/farmacocinética , Humanos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Transgénicos , Profármacos/síntesis química , Profármacos/química , Profármacos/farmacocinética , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo
16.
J Neurosci ; 39(37): 7291-7305, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31358653

RESUMEN

The oxidative metabolism of dopamine and consequent oxidative stress are implicated in dopaminergic neuronal loss, mediating the pathogenesis of Parkinson's disease (PD). The inducible detoxifying antioxidative enzyme Quinone oxidoreductase (NQO1) (NAD(P)H: quinone oxidoreductase 1), neuroprotective to counteract reactive oxidative species, is most prominent in the active stage of the disease and virtually absent at the end stage of the disease. However, the molecular mechanism dictating NQO1 expression oscillation remains unclear. Here we show that Akt phosphorylates NQO1 at T128 residues and triggers its polyubiquitination and proteasomal degradation, abrogating its antioxidative effects in PD. Akt binds NQO1 in a phosphorylation-dependent manner. Interestingly, Akt, but not PINK1, provokes NQO1 phosphorylation and polyubiquitination with Parkin as an E3 ligase. Unphosphorylatable NQO1 mutant displays more robust neuroprotective activity than WT NQO1 in suppressing reactive oxidative species and against MPTP-induced dopaminergic cell death, rescuing the motor disorders in both α-synuclein transgenic transgenic male and female mice elicited by the neurotoxin. Thus, our findings demonstrate that blockade of Akt-mediated NQO1 degradation may ameliorate PD pathogenesis.SIGNIFICANCE STATEMENT Dopaminergic neurodegeneration in Parkinson's disease (PD) is associated with the imbalance of oxidative metabolism of dopamine. Quinone oxidoreductase (NQO1), a potent antioxidant system, its expression levels are prominently increased in the early and intermediate stages of PD and disappeared in the end-stage PD. The molecular modification behavior of NQO1 after it is upregulated by oxidative stress in the early stage of PD, however, remains unclear. This study shows that Akt binds and phosphorylates NQO1 at T128 residue and promotes its ubiquitination and degradation, and Parkin acts as an E3 ligase in this process, which affects the antioxidant capacity of NQO1. This finding provides a novel molecular mechanism for NQO1 oscillation in PD pathogenesis.


Asunto(s)
Antioxidantes/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Estrés Oxidativo/fisiología , Trastornos Parkinsonianos/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , NAD(P)H Deshidrogenasa (Quinona)/genética , Trastornos Parkinsonianos/genética , Fosforilación/fisiología
17.
Proc Natl Acad Sci U S A ; 114(40): 10773-10778, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923922

RESUMEN

BDNF/TrkB neurotrophic signaling is essential for dopaminergic neuronal survival, and the activities are reduced in the substantial nigra (SN) of Parkinson's disease (PD). However, whether α-Syn (alpha-synuclein) aggregation, a hallmark in the remaining SN neurons in PD, accounts for the neurotrophic inhibition remains elusive. Here we show that α-Syn selectively interacts with TrkB receptors and inhibits BDNF/TrkB signaling, leading to dopaminergic neuronal death. α-Syn binds to the kinase domain on TrkB, which is negatively regulated by BDNF or Fyn tyrosine kinase. Interestingly, α-Syn represses TrkB lipid raft distribution, decreases its internalization, and reduces its axonal trafficking. Moreover, α-Syn also reduces TrkB protein levels via up-regulation of TrkB ubiquitination. Remarkably, dopamine's metabolite 3,4-Dihydroxyphenylacetaldehyde (DOPAL) stimulates the interaction between α-Syn and TrkB. Accordingly, MAO-B inhibitor rasagiline disrupts α-Syn/TrkB complex and rescues TrkB neurotrophic signaling, preventing α-Syn-induced dopaminergic neuronal death and restoring motor functions. Hence, our findings demonstrate a noble pathological role of α-Syn in antagonizing neurotrophic signaling, providing a molecular mechanism that accounts for its neurotoxicity in PD.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neuronas Dopaminérgicas/patología , Glicoproteínas de Membrana/metabolismo , Enfermedad de Parkinson/patología , Receptor trkB/metabolismo , alfa-Sinucleína/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Muerte Celular , Células Cultivadas , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Receptor trkB/genética , Transducción de Señal , alfa-Sinucleína/genética
18.
Proc Natl Acad Sci U S A ; 114(5): 1183-1188, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096359

RESUMEN

The abnormal aggregation of fibrillar α-synuclein in Lewy bodies plays a critical role in the pathogenesis of Parkinson's disease. However, the molecular mechanisms regulating α-synuclein pathological effects are incompletely understood. Here we show that α-synuclein binds phosphoinositide-3 kinase enhancer L (PIKE-L) in a phosphorylation-dependent manner and sequesters it in Lewy bodies, leading to dopaminergic cell death via AMP-activated protein kinase (AMPK) hyperactivation. α-Synuclein interacts with PIKE-L, an AMPK inhibitory binding partner, and this action is increased by S129 phosphorylation through AMPK and is decreased by Y125 phosphorylation via Src family kinase Fyn. A pleckstrin homology (PH) domain in PIKE-L directly binds α-synuclein and antagonizes its aggregation. Accordingly, PIKE-L overexpression decreases dopaminergic cell death elicited by 1-methyl-4-phenylpyridinium (MPP+), whereas PIKE-L knockdown elevates α-synuclein oligomerization and cell death. The overexpression of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or α-synuclein induces greater dopaminergic cell loss and more severe motor defects in PIKE-KO and Fyn-KO mice than in wild-type mice, and these effects are attenuated by the expression of dominant-negative AMPK. Hence, our findings demonstrate that α-synuclein neutralizes PIKE-L's neuroprotective actions in synucleinopathies, triggering dopaminergic neuronal death by hyperactivating AMPK.


Asunto(s)
Adenilato Quinasa/metabolismo , Neuronas Dopaminérgicas/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Cuerpos de Lewy/metabolismo , alfa-Sinucleína/metabolismo , 1-Metil-4-fenilpiridinio/toxicidad , Anciano , Anciano de 80 o más Años , Animales , Muerte Celular , Neuronas Dopaminérgicas/ultraestructura , Activación Enzimática , GTP Fosfohidrolasas/deficiencia , Proteínas de Unión al GTP/química , Proteínas Activadoras de GTPasa/química , Humanos , Intoxicación por MPTP/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Fosforilación , Dominios Homólogos a Pleckstrina , Agregación Patológica de Proteínas , Unión Proteica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-fyn/deficiencia , Proteínas Proto-Oncogénicas c-fyn/metabolismo
19.
J Neurosci ; 32(27): 9277-87, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22764235

RESUMEN

Ciliary neurotrophic factor (CNTF) is a potent neural cytokine with very low expression in the CNS, predominantly by astrocytes. CNTF increases rapidly and greatly following traumatic or ischemic injury. Understanding the underlying mechanisms would help to design pharmacological treatments to increase endogenous CNTF levels for neuroprotection. Here, we show that astroglial CNTF expression in the adult mouse striatum is increased twofold within 1 h and increases up to >30-fold over 2 weeks following a focal stroke caused by a transient middle cerebral artery occlusion (MCAO). Selective neuronal loss caused by intrastriatal injection of quinolinic acid resulted in a comparable increase. Cocultured neurons reduced CNTF expression in astrocytes, which was prevented by light trypsinization. RGD (arginine-glycine-aspartic acid) blocking peptides induced CNTF expression, which was dependent on transcription. Astroglial CNTF expression was not affected by diffusible neuronal molecules or by neurotransmitters. The transient ischemia does not seem to directly increase CNTF, as intrastriatal injection of an ischemic solution or exposure of naive mice or cultured cells to severe hypoxia had minimal effects. Inflammatory mechanisms were probably also not involved, as intrastriatal injection of proinflammatory cytokines (IFNγ, IL6) in naive mice had no or small effects, and anti-inflammatory treatments did not diminish the increase in CNTF after MCAO. CNTF-/- mice had more extensive tissue loss and similar astrocyte activation after MCAO than their wild-type littermates. These data suggest that contact-mediated integrin signaling between neurons and astrocytes normally represses CNTF expression and that neuronal dysfunction causes a rapid protective response by the CNS.


Asunto(s)
Astrocitos/patología , Comunicación Celular/genética , Factor Neurotrófico Ciliar/genética , Hipoxia Encefálica/patología , Infarto de la Arteria Cerebral Media/patología , Degeneración Nerviosa/patología , Neuronas/patología , Animales , Astrocitos/metabolismo , Astrocitos/fisiología , Línea Celular Tumoral , Factor Neurotrófico Ciliar/biosíntesis , Técnicas de Cocultivo , Hipoxia Encefálica/genética , Hipoxia Encefálica/fisiopatología , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/fisiopatología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Nerviosa/genética , Degeneración Nerviosa/fisiopatología , Neuronas/metabolismo , Neuronas/fisiología , Cultivo Primario de Células
20.
Neurobiol Dis ; 49: 68-78, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22960105

RESUMEN

Focal brain ischemia in adult rats rapidly and robustly induces neurogenesis in the subventricular zone (SVZ) but there are few and inconsistent reports in mice, presenting a hurdle to genetically investigate the endogenous neurogenic regulators such as ciliary neurotrophic factor (CNTF). Here, we first provide a platform for further studies by showing that middle cerebral artery occlusion in adult male C57BL/6 mice robustly enhances neurogenesis in the SVZ only under very specific conditions, i.e., 14days after a 30min occlusion. CNTF expression paralleled changes in the number of proliferated, BrdU-positive, SVZ cells. Stroke-induced proliferation was absent in CNTF-/- mice, suggesting that it is mediated by CNTF. MCAO-increased CNTF appears to act on C cell proliferation and by inducing FGF2 expression but not via EGF expression or Notch1 signaling of neural stem cells in the SVZ. CNTF is unique, as expression of other gp130 ligands, IL-6 and LIF, did not predict SVZ proliferation or showed no or only small compensatory increases in CNTF-/- mice. Expression of tumor necrosis factor-α, which can inhibit neurogenesis, and the presence of leukocytes in the SVZ were inversely correlated with neurogenesis, but pro-inflammatory cytokines did not affect CNTF expression in cultured astrocytes. These results suggest that slowly up-regulated CNTF in the SVZ mediates stroke-induced neurogenesis and is counteracted by inflammation. Further pharmacological stimulation of endogenous CNTF might be a good therapeutic strategy for cell replacement after stroke as CNTF regulates normal patterns of neurogenesis and is expressed almost exclusively in the nervous system.


Asunto(s)
Encéfalo/fisiopatología , Factor Neurotrófico Ciliar/metabolismo , Neurogénesis/fisiología , Nicho de Células Madre/fisiología , Accidente Cerebrovascular/fisiopatología , Animales , Astrocitos/fisiología , Células Cultivadas , Factor Neurotrófico Ciliar/genética , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media , Leucocitos/fisiología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/patología , Células-Madre Neurales/fisiología , Neuroinmunomodulación/fisiología , Accidente Cerebrovascular/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda