RESUMEN
Previous studies showed that the bladder extracellular matrix (B-ECM) could increase the differentiation efficiency of mesenchymal cells into smooth muscle cells (SMC). This study investigates the potential of human amniotic membrane-derived hydrogel (HAM-hydrogel) as an alternative to xenogeneic B-ECM for the myogenic differentiation of the rabbit adipose tissue-derived MSC (AD-MSC). Decellularized human amniotic membrane (HAM) and sheep urinary bladder (SUB) were utilized to create pre-gel solutions for hydrogel formation. Rabbit AD-MSCs were cultured on SUB-hydrogel or HAM-hydrogel-coated plates supplemented with differentiation media containing myogenic growth factors (PDGF-BB and TGF-ß1). An uncoated plate served as the control. After 2 weeks, real-time qPCR, immunocytochemistry, flow cytometry, and western blot were employed to assess the expression of SMC-specific markers (MHC and α-SMA) at both protein and mRNA levels. Our decellularization protocol efficiently removed cell nuclei from the bladder and amniotic tissues, preserving key ECM components (collagen, mucopolysaccharides, and elastin) within the hydrogels. Compared to the control, the hydrogel-coated groups exhibited significantly upregulated expression of SMC markers (p ≤ .05). These findings suggest HAM-hydrogel as a promising xenogeneic-free alternative for bladder tissue engineering, potentially overcoming limitations associated with ethical concerns and contamination risks of xenogeneic materials.
Asunto(s)
Amnios , Diferenciación Celular , Hidrogeles , Células Madre Mesenquimatosas , Miocitos del Músculo Liso , Animales , Amnios/citología , Amnios/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Conejos , Humanos , Hidrogeles/química , Vejiga Urinaria/citología , Vejiga Urinaria/metabolismo , Matriz Extracelular/metabolismo , Ovinos , Células Cultivadas , Ingeniería de Tejidos/métodosRESUMEN
SARS-COV-2 is responsible for the current worldwide pandemic, which started on December 2019 in Wuhan, China. On March 2020 World Health Organization announced COVID-19 as the new pandemic. Some SARS-COV-2 variants have increased transmissibility, cause more severe disease (e.g., increased hospitalizations or deaths), are resistant to antibodies produced by the previous infection or vaccination, and there is more difficulty in treatment and diagnosis of them. World Health Organization considered them as SARS-CoV-2 variants of concern. The introductory reproduction rate (R0) is an epidemiologic index of the transmissibility of the virus, defined as the average number of persons infected by the virus after known contact with an infectious person in a susceptible population. An R0 > 1 means that the virus is spreading exponentially, and R0 < 1, means that the outbreak is subsiding. In various studies, the estimated R and VOC growth rates were reported to be greater than the ancestral strains. However, it was also a low level of concordance between the estimated Rt of the same variant in different studies. It is because the R of a variant not only dependent on the biological and intrinsic factors of the virus but also several parameters can affect the R0, including the duration of contagiousness and the likelihood of infection per contact. Evaluation of changes in SARS-CoV-2 has shown that the rate of human-to-human transmission of this virus has increased. Like other viruses with non-human sources which succeeded in surviving in the human population, SARS-CoV-2 has gradually adapted to the human population, and its ability to transmit from human to human has increased. Of course, due to the continuous changes in this virus, it is crucial to survey the rate of transmission of the virus over time.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Pandemias , ReproducciónRESUMEN
BACKGROUND: Association between traumatic brain injury (TBI) and Parkinson's disease (PD) has been a hot topic of discussion for a long time. Previous studies reported that the incidence of PD is significantly higher among elderly adults with a history of TBI. Due to contradictory results of previous investigations, we aimed to perform a systematic review and meta-analysis to investigate the role of TBI as a risk factor for PD. METHODS: We conducted a systematic literature search in the electronic databases PubMed, Web of Science, and Scopus. In this study, we included published papers on the risk of PD in patients with previous TBI compared to the healthy control group. RESULTS: After the screening, 15 studies entered our systematic review and meta-analysis. The risk ratio of TBI among PD and controls by a combination of 15 studies using a random-effect model was 1.48 (95% CI 1.22-1.74). The prevalence of TBI by a combination of 14 studies was 18% (95% CI 12-24%). CONCLUSION: Our result suggests that TBI is a major risk factor for developing PD later in life. At this time, there is a lack of populous prospective cohort studies with sufficient follow-up period to provide a well-documented association between the onset of PD and severity, frequency, and location of prior TBI, which warrants special efforts and consideration for years to come.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Enfermedad de Parkinson , Adulto , Humanos , Anciano , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/complicaciones , Estudios Prospectivos , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/epidemiología , Factores de Riesgo , IncidenciaRESUMEN
BACKGROUND: The use of a space maintainer during the deciduous dentition period at a proper time can prevent the consequences of the loss of the arch length in the future. There is controversy over the use of space maintainers. OBJECTIVES: The aim of this study was to evaluate the magnitude of stresses exerted on immature permanent molar teeth, and the extent of displacement of these teeth when the adjacent teeth are missing, but after placing a space maintainer. Studies carried out to date have used clinical measurements, e.g., X-rays and dental casts. MATERIAL AND METHODS: The finite element model (FEM) was used for modeling the maxillary and mandibular teeth and the bone structure. A space maintainer (band and loop) was also designed for modeling. Force was applied and a finite element analysis (FEA) was carried out in 6 states in the maxilla and in the mandible to evaluate the distribution of stresses and the amount of displacement of immature permanent first molar teeth in the presence or absence of deciduous second molar teeth and a space maintainer. RESULTS: During mastication, when the deciduous second molar tooth was absent, the maximum stress was transferred to incomplete roots. When there was a space maintainer, stress was transferred to the space maintainer itself and to the distal side of the deciduous first molar tooth. The displacement of permanent first molar teeth was minimal in the presence of all teeth; in the absence of the deciduous second molar tooth, this displacement increased 4-5-fold, which decreased again almost to the level of the 1st/4th state (intact arch) in the presence of the space maintainer. CONCLUSIONS: The results showed the importance of the use of space maintainers, as they significantly decrease the momentary displacement of the teeth as well as the stress exerted on the developing permanent first molar teeth.
Asunto(s)
Diente Molar , Diente Primario , Análisis de Elementos Finitos , Humanos , Mandíbula , Maxilar , Diente Molar/diagnóstico por imagenRESUMEN
STATEMENT OF THE PROBLEM: Sufficient adhesion between silorane/methacrylate-based composites and methacrylate impregnated glass fiber increases the benefits of fibers and enhances the mechanical and clinical performance of both composites. PURPOSE: The aim of this study was to evaluate the compatibility of silorane and methacrylate-based composites with pre-impregnated glass fiber by using flexural strength (FS) test. MATERIALS AND METHOD: A total of 60 bar specimens were prepared in a split mold (25×2×2 mm) in 6 groups (n=10). In groups 1 and 4 (control), silorane-based (Filtek P90) and nanohybrid (Filtek Z350) composites were placed into the mold and photopolymerized with a high-intensity curing unit. In groups 2 and 5, pre-impregnated glass fiber was first placed into the mold and after two minutes of curing, the mold was filled with respective composites. Prior to filling the mold in groups 3 and 6, an intermediate adhesive layer was applied to the glass fiber. The specimens were stored in distilled water for 24 hours and then their flexural strength was measured by 3 point bending test, using universal testing machine at the crosshead speed of 1 mm/min. Two-way ANOVA and post-hoc test were used for analyzing the data (p< 0.05). RESULTS: A significant difference was observed between the groups (p< 0.05). The highest FS was registered for combination of Z350 composite, impregnated glass fiber, and application of intermediate adhesive layer .The lowest FS was obtained in Filtek P90 alone. Cohesive failure in composite was the predominant failure in all groups, except group 5 in which adhesive failure between the composite and fiber was exclusively observed. CONCLUSION: Significant improvement in FS was achieved for both composites with glass fiber. Additional application of intermediate adhesive layer before composite build up seems to increase FS. Nanohybrid composite showed higher FS than silorane-based composite.