Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Chem Res Toxicol ; 36(6): 882-899, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37162359

RESUMEN

Syncytialization, the fusion of cytotrophoblasts into an epithelial barrier that constitutes the maternal-fetal interface, is a crucial event of placentation. This process is characterized by distinct changes to amino acid and energy metabolism. A metabolite of the industrial solvent trichloroethylene (TCE), S-(1,2-dichlorovinyl)-l-cysteine (DCVC), modifies energy metabolism and amino acid abundance in HTR-8/SVneo extravillous trophoblasts. In the current study, we investigated DCVC-induced changes to energy metabolism and amino acids during forskolin-stimulated syncytialization in BeWo cells, a human villous trophoblastic cell line that models syncytialization in vitro. BeWo cells were exposed to forskolin at 100 µM for 48 h to stimulate syncytialization. During syncytialization, BeWo cells were also treated with DCVC at 0 (control), 10, or 20 µM. Following treatment, the targeted metabolomics platform, "Tricarboxylic Acid Plus", was used to identify changes in energy metabolism and amino acids. DCVC treatment during syncytialization decreased oleic acid, aspartate, proline, uridine diphosphate (UDP), UDP-d-glucose, uridine monophosphate, and cytidine monophosphate relative to forskolin-only treatment controls, but did not increase any measured metabolite. Notable changes stimulated by syncytialization in the absence of DCVC included increased adenosine monophosphate and guanosine monophosphate, as well as decreased aspartate and glutamate. Pathway analysis revealed multiple pathways in amino acid and sugar metabolisms that were altered with forskolin-stimulated syncytialization alone and DCVC treatment during syncytialization. Analysis of ratios of metabolites within the pathways revealed that DCVC exposure during syncytialization changed metabolite ratios in the same or different direction compared to syncytialization alone. Building off our oleic acid findings, we found that extracellular matrix metalloproteinase-2, which is downstream in oleic acid signaling, underwent the same changes as oleic acid. Together, the metabolic changes stimulated by DCVC treatment during syncytialization suggest changes in energy metabolism and amino acid abundance as potential mechanisms by which DCVC could impact syncytialization and pregnancy.


Asunto(s)
Cisteína , Tricloroetileno , Femenino , Humanos , Embarazo , Aminoácidos/metabolismo , Ácido Aspártico/metabolismo , Colforsina/metabolismo , Cisteína/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Ácidos Oléicos/metabolismo , Placenta , Tricloroetileno/metabolismo , Trofoblastos
2.
Muscle Nerve ; 67(3): 208-216, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36321729

RESUMEN

INTRODUCTION/AIMS: Body mass index (BMI) is linked to amyotrophic lateral sclerosis (ALS) risk and prognosis, but additional research is needed. The aim of this study was to identify whether and when historical changes in BMI occurred in ALS participants, how these longer term trajectories associated with survival, and whether metabolomic profiles provided insight into potential mechanisms. METHODS: ALS and control participants self-reported body height and weight 10 (reference) and 5 years earlier, and at study entry (diagnosis for ALS participants). Generalized estimating equations evaluated differences in BMI trajectories between cases and controls. ALS survival was evaluated by BMI trajectory group using accelerated failure time models. BMI trajectories and survival associations were explored using published metabolomic profiling and correlation networks. RESULTS: Ten-year BMI trends differed between ALS and controls, with BMI loss in the 5 years before diagnosis despite BMI gains 10 to 5 years beforehand in both groups. An overall 10-year drop in BMI associated with a 27.1% decrease in ALS survival (P = .010). Metabolomic networks in ALS participants showed dysregulation in sphingomyelin, bile acid, and plasmalogen subpathways. DISCUSSION: ALS participants lost weight in the 5-year period before enrollment. BMI trajectories had three distinct groups and the group with significant weight loss in the past 10 years had the worst survival. Participants with a high BMI and increase in weight in the 10 years before symptom onset also had shorter survival. Certain metabolomics profiles were associated with the BMI trajectories. Replicating these findings in prospective cohorts is warranted.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Índice de Masa Corporal , Estudios Prospectivos , Metabolómica , Pronóstico
3.
Brain ; 145(12): 4425-4439, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-35088843

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease lacking effective treatments. This is due, in part, to a complex and incompletely understood pathophysiology. To shed light, we conducted untargeted metabolomics on plasma from two independent cross-sectional ALS cohorts versus control participants to identify recurrent dysregulated metabolic pathways. Untargeted metabolomics was performed on plasma from two ALS cohorts (cohort 1, n = 125; cohort 2, n = 225) and healthy controls (cohort 1, n = 71; cohort 2, n = 104). Individual differential metabolites in ALS cases versus controls were assessed by Wilcoxon, adjusted logistic regression and partial least squares-discriminant analysis, while group lasso explored sub-pathway level differences. Adjustment parameters included age, sex and body mass index. Metabolomics pathway enrichment analysis was performed on metabolites selected using the above methods. Additionally, we conducted a sex sensitivity analysis due to sex imbalance in the cohort 2 control arm. Finally, a data-driven approach, differential network enrichment analysis (DNEA), was performed on a combined dataset to further identify important ALS metabolic pathways. Cohort 2 ALS participants were slightly older than the controls (64.0 versus 62.0 years, P = 0.009). Cohort 2 controls were over-represented in females (68%, P < 0.001). The most concordant cohort 1 and 2 pathways centred heavily on lipid sub-pathways, including complex and signalling lipid species and metabolic intermediates. There were differences in sub-pathways that were enriched in ALS females versus males, including in lipid sub-pathways. Finally, DNEA of the merged metabolite dataset of both ALS and control cohorts identified nine significant subnetworks; three centred on lipids and two encompassed a range of sub-pathways. In our analysis, we saw consistent and important shared metabolic sub-pathways in both ALS cohorts, particularly in lipids, further supporting their importance as ALS pathomechanisms and therapeutics targets.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Masculino , Femenino , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Estudios Transversales , Metabolómica/métodos , Lípidos
4.
J Proteome Res ; 21(12): 2936-2946, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36367990

RESUMEN

Untargeted liquid chromatography-mass spectrometry metabolomics studies are typically performed under roughly identical experimental settings. Measurements acquired with different LC-MS protocols or following extended time intervals harbor significant variation in retention times and spectral abundances due to altered chromatographic, spectrometric, and other factors, raising many data analysis challenges. We developed a computational workflow for merging and harmonizing metabolomics data acquired under disparate LC-MS conditions. Plasma metabolite profiles were collected from two sets of maternal subjects three years apart using distinct instruments and LC-MS procedures. Metabolomics features were aligned using metabCombiner to generate lists of compounds detected across all experimental batches. We applied data set-specific normalization methods to remove interbatch and interexperimental variation in spectral intensities, enabling statistical analysis on the assembled data matrix. Bioinformatics analyses revealed large-scale metabolic changes in maternal plasma between the first and third trimesters of pregnancy and between maternal plasma and umbilical cord blood. We observed increases in steroid hormones and free fatty acids from the first trimester to term of gestation, along with decreases in amino acids coupled to increased levels in cord blood. This work demonstrates the viability of integrating nonidentically acquired LC-MS metabolomics data and its utility in unconventional metabolomics study designs.


Asunto(s)
Aminoácidos , Metabolómica , Embarazo , Femenino , Humanos , Metabolómica/métodos , Cromatografía Liquida , Espectrometría de Masas/métodos , Aminoácidos/metabolismo , Plasma/metabolismo
5.
Anal Chem ; 93(12): 5028-5036, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33724799

RESUMEN

LC-HRMS experiments detect thousands of compounds, with only a small fraction of them identified in most studies. Traditional data processing pipelines contain an alignment step to assemble the measurements of overlapping features across samples into a unified table. However, data sets acquired under nonidentical conditions are not amenable to this process, mostly due to significant alterations in chromatographic retention times. Alignment of features between disparately acquired LC-MS metabolomics data could aid collaborative compound identification efforts and enable meta-analyses of expanded data sets. Here, we describe metabCombiner, a new computational pipeline for matching known and unknown features in a pair of untargeted LC-MS data sets and concatenating their abundances into a combined table of intersecting feature measurements. metabCombiner groups features by mass-to-charge (m/z) values to generate a search space of possible feature pair alignments, fits a spline through a set of selected retention time ordered pairs, and ranks alignments by m/z, mapped retention time, and relative abundance similarity. We evaluated this workflow on a pair of plasma metabolomics data sets acquired with different gradient elution methods, achieving a mean absolute retention time prediction error of roughly 0.06 min and a weighted per-compound matching accuracy of approximately 90%. We further demonstrate the utility of this method by comprehensively mapping features in urine and muscle metabolomics data sets acquired from different laboratories. metabCombiner has the potential to bridge the gap between otherwise incompatible metabolomics data sets and is available as an R package at https://github.com/hhabra/metabCombiner and Bioconductor.


Asunto(s)
Metabolómica , Cromatografía Liquida , Espectrometría de Masas , Flujo de Trabajo
6.
Bioinformatics ; 36(6): 1801-1806, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31642507

RESUMEN

MOTIVATION: When metabolites are analyzed by electrospray ionization (ESI)-mass spectrometry, they are usually detected as multiple ion species due to the presence of isotopes, adducts and in-source fragments. The signals generated by these degenerate features (along with contaminants and other chemical noise) obscure meaningful patterns in MS data, complicating both compound identification and downstream statistical analysis. To address this problem, we developed Binner, a new tool for the discovery and elimination of many degenerate feature signals typically present in untargeted ESI-LC-MS metabolomics data. RESULTS: Binner generates feature annotations and provides tools to help users visualize informative feature relationships that can further elucidate the underlying structure of the data. To demonstrate the utility of Binner and to evaluate its performance, we analyzed data from reversed phase LC-MS and hydrophilic interaction chromatography (HILIC) platforms and demonstrated the accuracy of selected annotations using MS/MS. When we compared Binner annotations of 75 compounds previously identified in human plasma samples with annotations generated by three similar tools, we found that Binner achieves superior performance in the number and accuracy of annotations while simultaneously minimizing the number of incorrectly annotated principal ions. Data reduction and pattern exploration with Binner have allowed us to catalog a number of previously unrecognized complex adducts and neutral losses generated during the ionization of molecules in LC-MS. In summary, Binner allows users to explore patterns in their data and to efficiently and accurately eliminate a significant number of the degenerate features typically found in various LC-MS modalities. AVAILABILITY AND IMPLEMENTATION: Binner is written in Java and is freely available from http://binner.med.umich.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Cromatografía Liquida , Humanos , Iones , Espectrometría de Masa por Ionización de Electrospray
7.
Bioinformatics ; 35(18): 3441-3452, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30887029

RESUMEN

MOTIVATION: Functional enrichment testing methods can reduce data comprising hundreds of altered biomolecules to smaller sets of altered biological 'concepts' that help generate testable hypotheses. This study leveraged differential network enrichment analysis methodology to identify and validate lipid subnetworks that potentially differentiate chronic kidney disease (CKD) by severity or progression. RESULTS: We built a partial correlation interaction network, identified highly connected network components, applied network-based gene-set analysis to identify differentially enriched subnetworks, and compared the subnetworks in patients with early-stage versus late-stage CKD. We identified two subnetworks 'triacylglycerols' and 'cardiolipins-phosphatidylethanolamines (CL-PE)' characterized by lower connectivity, and a higher abundance of longer polyunsaturated triacylglycerols in patients with severe CKD (stage ≥4) from the Clinical Phenotyping Resource and Biobank Core. These finding were replicated in an independent cohort, the Chronic Renal Insufficiency Cohort. Using an innovative method for elucidating biological alterations in lipid networks, we demonstrated alterations in triacylglycerols and cardiolipins-phosphatidylethanolamines that precede the clinical outcome of end-stage kidney disease by several years. AVAILABILITY AND IMPLEMENTATION: A complete list of NetGSA results in HTML format can be found at http://metscape.ncibi.org/netgsa/12345-022118/cric_cprobe/022118/results_cric_cprobe/main.html. The DNEA is freely available at https://github.com/wiggie/DNEA. Java wrapper leveraging the cytoscape.js framework is available at http://js.cytoscape.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Insuficiencia Renal Crónica , Femenino , Humanos , Lípidos , Masculino
8.
J Proteome Res ; 18(5): 2004-2011, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30895797

RESUMEN

l-Carnitine is a candidate therapeutic for the treatment of septic shock, a condition that carries a ≥40% mortality. Responsiveness to l-carnitine may hinge on unique metabolic profiles that are not evident from the clinical phenotype. To define these profiles, we performed an untargeted metabolomic analysis of serum from 21 male sepsis patients enrolled in a placebo-controlled l-carnitine clinical trial. Although treatment with l-carnitine is known to induce changes in the sepsis metabolome, we found a distinct set of metabolites that differentiated 1-year survivors from nonsurvivors. Following feature alignment, we employed a new and innovative data reduction strategy followed by false discovery correction, and identified 63 metabolites that differentiated carnitine-treated 1-year survivors versus nonsurvivors. Following identification by MS/MS and database search, several metabolite markers of vascular inflammation were determined to be prominently elevated in the carnitine-treated nonsurvivor cohort, including fibrinopeptide A, allysine, and histamine. While preliminary, these results corroborate that metabolic profiles may be useful to differentiate l-carnitine treatment responsiveness. Furthermore, these data show that the metabolic signature of l-carnitine-treated nonsurvivors is associated with a severity of illness (e.g., vascular inflammation) that is not routinely clinically detected.


Asunto(s)
Ácido 2-Aminoadípico/análogos & derivados , Antiinflamatorios no Esteroideos/uso terapéutico , Carnitina/uso terapéutico , Fibrinopéptido A/metabolismo , Histamina/sangre , Choque Séptico/diagnóstico , Ácido 2-Aminoadípico/sangre , Adulto , Anciano , Biomarcadores/sangre , Cromatografía Liquida , Humanos , Masculino , Metaboloma , Persona de Mediana Edad , Pronóstico , Índice de Severidad de la Enfermedad , Choque Séptico/sangre , Choque Séptico/mortalidad , Choque Séptico/patología , Análisis de Supervivencia , Sobrevivientes , Espectrometría de Masas en Tándem
9.
Bioinformatics ; 33(10): 1545-1553, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28137712

RESUMEN

MOTIVATION: Recent technological advances in mass spectrometry, development of richer mass spectral libraries and data processing tools have enabled large scale metabolic profiling. Biological interpretation of metabolomics studies heavily relies on knowledge-based tools that contain information about metabolic pathways. Incomplete coverage of different areas of metabolism and lack of information about non-canonical connections between metabolites limits the scope of applications of such tools. Furthermore, the presence of a large number of unknown features, which cannot be readily identified, but nonetheless can represent bona fide compounds, also considerably complicates biological interpretation of the data. RESULTS: Leveraging recent developments in the statistical analysis of high-dimensional data, we developed a new Debiased Sparse Partial Correlation algorithm (DSPC) for estimating partial correlation networks and implemented it as a Java-based CorrelationCalculator program. We also introduce a new version of our previously developed tool Metscape that enables building and visualization of correlation networks. We demonstrate the utility of these tools by constructing biologically relevant networks and in aiding identification of unknown compounds. AVAILABILITY AND IMPLEMENTATION: http://metscape.med.umich.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Redes y Vías Metabólicas , Metabolómica/métodos , Modelos Biológicos , Adulto , Femenino , Humanos , Espectrometría de Masas/métodos , Persona de Mediana Edad
10.
Bioinformatics ; 32(10): 1536-43, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26794319

RESUMEN

MOTIVATION: Capabilities in the field of metabolomics have grown tremendously in recent years. Many existing resources contain the chemical properties and classifications of commonly identified metabolites. However, the annotation of small molecules (both endogenous and synthetic) to meaningful biological pathways and concepts still lags behind the analytical capabilities and the chemistry-based annotations. Furthermore, no tools are available to visually explore relationships and networks among functionally related groups of metabolites (biomedical concepts). Such a tool would provide the ability to establish testable hypotheses regarding links among metabolic pathways, cellular processes, phenotypes and diseases. RESULTS: Here we present ConceptMetab, an interactive web-based tool for mapping and exploring the relationships among 16 069 biologically defined metabolite sets developed from Gene Ontology, KEGG and Medical Subject Headings, using both KEGG and PubChem compound identifiers, and based on statistical tests for association. We demonstrate the utility of ConceptMetab with multiple scenarios, showing it can be used to identify known and potentially novel relationships among metabolic pathways, cellular processes, phenotypes and diseases, and provides an intuitive interface for linking compounds to their molecular functions and higher level biological effects. AVAILABILITY AND IMPLEMENTATION: http://conceptmetab.med.umich.edu CONTACTS: akarnovsky@umich.edu or sartorma@umich.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Metabolómica , Programas Informáticos , Conjuntos de Datos como Asunto , Humanos , Redes y Vías Metabólicas , Estadística como Asunto , Vocabulario Controlado
11.
Proteomics ; 15(9): 1508-11, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25546123

RESUMEN

Pancreatic beta cells have well-developed ER to accommodate for the massive production and secretion of insulin. ER homeostasis is vital for normal beta cell function. Perturbation of ER homeostasis contributes to beta cell dysfunction in both type 1 and type 2 diabetes. To systematically identify the molecular machinery responsible for proinsulin biogenesis and maintenance of beta cell ER homeostasis, a widely used mouse pancreatic beta cell line, MIN6 cell was used to purify rough ER. Two different purification schemes were utilized. In each experiment, the ER pellets were solubilized and analyzed by 1D SDS-PAGE coupled with HPLC-MS/MS. A total of 1467 proteins were identified in three experiments with ≥95% confidence, among which 1117 proteins were found in at least two separate experiments and 737 proteins found in all three experiments. GO analysis revealed a comprehensive profile of known and novel players responsible for proinsulin biogenesis and ER homeostasis. Further bioinformatics analysis also identified potential beta cell specific ER proteins as well as ER proteins present in the risk genetic loci of type 2 diabetes. This dataset defines a molecular environment in the ER for proinsulin synthesis, folding and export and laid a solid foundation for further characterizations of altered ER homeostasis under diabetes-causing conditions. All MS data have been deposited in the ProteomeXchange with identifier PXD001081 (http://proteomecentral.proteomexchange.org/dataset/PXD001081).


Asunto(s)
Retículo Endoplásmico Rugoso/metabolismo , Células Secretoras de Insulina/metabolismo , Proinsulina/metabolismo , Proteoma/metabolismo , Animales , Línea Celular , Cromatografía Líquida de Alta Presión , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Ratones , Proteómica , Espectrometría de Masas en Tándem
12.
Bioinformatics ; 30(15): 2239-41, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24713438

RESUMEN

MOTIVATION: In recent years, metabolomics has emerged as an approach to perform large-scale characterization of small molecules in biological systems. Metabolomics posed a number of bioinformatics challenges associated in data analysis and interpretation. Genome-based metabolic reconstructions have established a powerful framework for connecting metabolites to genes through metabolic reactions and enzymes that catalyze them. Pathway databases and bioinformatics tools that use this framework have proven to be useful for annotating experimental metabolomics data. This framework can be used to infer connections between metabolites and diseases through annotated disease genes. However, only about half of experimentally detected metabolites can be mapped to canonical metabolic pathways. We present a new Cytoscape 3 plug-in, MetDisease, which uses an alternative approach to link metabolites to disease information. MetDisease uses Medical Subject Headings (MeSH) disease terms mapped to PubChem compounds through literature to annotate compound networks. AVAILABILITY AND IMPLEMENTATION: MetDisease can be downloaded from http://apps.cytoscape.org/apps/metdisease or installed via the Cytoscape app manager. Further information about MetDisease can be found at http://metdisease.ncibi.org CONTACT: akarnovs@med.umich.edu SUPPLEMENTARY INFORMATION: Supplementary Data are available at Bioinformatics online.


Asunto(s)
Enfermedad/genética , Metabolómica/métodos , Bases de Datos de Compuestos Químicos , Genoma Humano/genética , Humanos , Medical Subject Headings , Redes y Vías Metabólicas , Programas Informáticos
13.
J Proteome Res ; 13(2): 640-9, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24289193

RESUMEN

Acute respiratory distress syndrome (ARDS) remains a significant hazard to human health and is clinically challenging because there are no prognostic biomarkers and no effective pharmacotherapy. The lung compartment metabolome may detail the status of the local environment that could be useful in ARDS biomarker discovery and the identification of drug target opportunities. However, neither the utility of bronchoalveolar lavage fluid (BALF) as a biofluid for metabolomics nor the optimal analytical platform for metabolite identification is established. To address this, we undertook a study to compare metabolites in BALF samples from patients with ARDS and healthy controls using a newly developed liquid chromatography (LC)-mass spectroscopy (MS) platform for untargeted metabolomics. Following initial testing of three different high-performance liquid chromatography (HPLC) columns, we determined that reversed phase (RP)-LC and hydrophilic interaction chromatography (HILIC) were the most informative chromatographic methods because they yielded the most and highest quality data. Following confirmation of metabolite identification, statistical analysis resulted in 37 differentiating metabolites in the BALF of ARDS compared with health across both analytical platforms. Pathway analysis revealed networks associated with amino acid metabolism, glycolysis and gluconeogenesis, fatty acid biosynthesis, phospholipids, and purine metabolism in the ARDS BALF. The complementary analytical platforms of RPLC and HILIC-LC generated informative, insightful metabolomics data of the ARDS lung environment.


Asunto(s)
Líquido del Lavado Bronquioalveolar , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Metabolómica , Síndrome de Dificultad Respiratoria/metabolismo , Biomarcadores/metabolismo , Estudios de Casos y Controles , Electroforesis en Gel de Poliacrilamida , Humanos
14.
Carcinogenesis ; 35(6): 1292-300, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24510113

RESUMEN

In cancer cells, the process of epithelial-mesenchymal transition (EMT) confers migratory and invasive capacity, resistance to apoptosis, drug resistance, evasion of host immune surveillance and tumor stem cell traits. Cells undergoing EMT may represent tumor cells with metastatic potential. Characterizing the EMT secretome may identify biomarkers to monitor EMT in tumor progression and provide a prognostic signature to predict patient survival. Utilizing a transforming growth factor-ß-induced cell culture model of EMT, we quantitatively profiled differentially secreted proteins, by GeLC-tandem mass spectrometry. Integrating with the corresponding transcriptome, we derived an EMT-associated secretory phenotype (EASP) comprising of proteins that were differentially upregulated both at protein and mRNA levels. Four independent primary tumor-derived gene expression data sets of lung cancers were used for survival analysis by the random survival forests (RSF) method. Analysis of 97-gene EASP expression in human lung adenocarcinoma tumors revealed strong positive correlations with lymph node metastasis, advanced tumor stage and histological grade. RSF analysis built on a training set (n = 442), including age, sex and stage as variables, stratified three independent lung cancer data sets into low-, medium- and high-risk groups with significant differences in overall survival. We further refined EASP to a 20 gene signature (rEASP) based on variable importance scores from RSF analysis. Similar to EASP, rEASP predicted survival of both adenocarcinoma and squamous carcinoma patients. More importantly, it predicted survival in the early-stage cancers. These results demonstrate that integrative analysis of the critical biological process of EMT provides mechanism-based and clinically relevant biomarkers with significant prognostic value.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Fenotipo , Adulto , Anciano , Línea Celular Tumoral , Análisis por Conglomerados , Biología Computacional , Transición Epitelial-Mesenquimal/genética , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/terapia , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Pronóstico , Proteómica
15.
Metabolites ; 14(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38393017

RESUMEN

Liquid chromatography-high-resolution mass spectrometry (LC-HRMS), as applied to untargeted metabolomics, enables the simultaneous detection of thousands of small molecules, generating complex datasets. Alignment is a crucial step in data processing pipelines, whereby LC-MS features derived from common ions are assembled into a unified matrix amenable to further analysis. Variability in the analytical factors that influence liquid chromatography separations complicates data alignment. This is prominent when aligning data acquired in different laboratories, generated using non-identical instruments, or between batches from large-scale studies. Previously, we developed metabCombiner for aligning disparately acquired LC-MS metabolomics datasets. Here, we report significant upgrades to metabCombiner that enable the stepwise alignment of multiple untargeted LC-MS metabolomics datasets, facilitating inter-laboratory reproducibility studies. To accomplish this, a "primary" feature list is used as a template for matching compounds in "target" feature lists. We demonstrate this workflow by aligning four lipidomics datasets from core laboratories generated using each institution's in-house LC-MS instrumentation and methods. We also introduce batchCombine, an application of the metabCombiner framework for aligning experiments composed of multiple batches. metabCombiner is available as an R package on Github and Bioconductor, along with a new online version implemented as an R Shiny App.

16.
Bioinformatics ; 28(10): 1408-10, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22492643

RESUMEN

SUMMARY: Progress in high-throughput genomic technologies has led to the development of a variety of resources that link genes to functional information contained in the biomedical literature. However, tools attempting to link small molecules to normal and diseased physiology and published data relevant to biologists and clinical investigators, are still lacking. With metabolomics rapidly emerging as a new omics field, the task of annotating small molecule metabolites becomes highly relevant. Our tool Metab2MeSH uses a statistical approach to reliably and automatically annotate compounds with concepts defined in Medical Subject Headings, and the National Library of Medicine's controlled vocabulary for biomedical concepts. These annotations provide links from compounds to biomedical literature and complement existing resources such as PubChem and the Human Metabolome Database.


Asunto(s)
Medical Subject Headings , Metabolómica , Bases de Datos de Compuestos Químicos , Bases de Datos Genéticas , Humanos , Neoplasias/metabolismo , Vocabulario Controlado
17.
Bioinformatics ; 28(3): 373-80, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22135418

RESUMEN

MOTIVATION: Metabolomics is a rapidly evolving field that holds promise to provide insights into genotype-phenotype relationships in cancers, diabetes and other complex diseases. One of the major informatics challenges is providing tools that link metabolite data with other types of high-throughput molecular data (e.g. transcriptomics, proteomics), and incorporate prior knowledge of pathways and molecular interactions. RESULTS: We describe a new, substantially redesigned version of our tool Metscape that allows users to enter experimental data for metabolites, genes and pathways and display them in the context of relevant metabolic networks. Metscape 2 uses an internal relational database that integrates data from KEGG and EHMN databases. The new version of the tool allows users to identify enriched pathways from expression profiling data, build and analyze the networks of genes and metabolites, and visualize changes in the gene/metabolite data. We demonstrate the applications of Metscape to annotate molecular pathways for human and mouse metabolites implicated in the pathogenesis of sepsis-induced acute lung injury, for the analysis of gene expression and metabolite data from pancreatic ductal adenocarcinoma, and for identification of the candidate metabolites involved in cancer and inflammation. AVAILABILITY: Metscape is part of the National Institutes of Health-supported National Center for Integrative Biomedical Informatics (NCIBI) suite of tools, freely available at http://metscape.ncibi.org. It can be downloaded from http://cytoscape.org or installed via Cytoscape plugin manager. CONTACT: metscape-help@umich.edu; akarnovs@umich.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Perfilación de la Expresión Génica , Metabolómica , Programas Informáticos , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animales , Humanos , Inflamación/metabolismo , Redes y Vías Metabólicas , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteómica , Sepsis/metabolismo
18.
J Vis Exp ; (201)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38009735

RESUMEN

A significant challenge in the analysis of omics data is extracting actionable biological knowledge. Metabolomics is no exception. The general problem of relating changes in levels of individual metabolites to specific biological processes is compounded by the large number of unknown metabolites present in untargeted liquid chromatography-mass spectrometry (LC-MS) studies. Further, secondary metabolism and lipid metabolism are poorly represented in existing pathway databases. To overcome these limitations, our group has developed several tools for data-driven network construction and analysis. These include CorrelationCalculator and Filigree. Both tools allow users to build partial correlation-based networks from experimental metabolomics data when the number of metabolites exceeds the number of samples. CorrelationCalculator supports the construction of a single network, while Filigree allows building a differential network utilizing data from two groups of samples, followed by network clustering and enrichment analysis. We will describe the utility and application of both tools for the analysis of real-life metabolomics data.


Asunto(s)
Metaboloma , Metabolómica , Metabolómica/métodos , Espectrometría de Masas , Cromatografía Liquida/métodos , Bases de Datos Factuales
19.
Crit Care Explor ; 5(4): e0881, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36998529

RESUMEN

Perturbed host metabolism is increasingly recognized as a pillar of sepsis pathogenesis, yet the dynamic alterations in metabolism and its relationship to other components of the host response remain incompletely understood. We sought to identify the early host-metabolic response in patients with septic shock and to explore biophysiological phenotyping and differences in clinical outcomes among metabolic subgroups. DESIGN: We measured serum metabolites and proteins reflective of the host-immune and endothelial response in patients with septic shock. SETTING: We considered patients from the placebo arm of a completed phase II, randomized controlled trial conducted at 16 U.S. medical centers. Serum was collected at baseline (within 24 hr of the identification of septic shock), 24-hour, and 48-hour postenrollment. Linear mixed models were built to assess the early trajectory of protein analytes and metabolites stratified by 28-day mortality status. Unsupervised clustering of baseline metabolomics data was conducted to identify subgroups of patients. PATIENTS: Patients with vasopressor-dependent septic shock and moderate organ dysfunction that were enrolled in the placebo arm of a clinical trial. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Fifty-one metabolites and 10 protein analytes were measured longitudinally in 72 patients with septic shock. In the 30 patients (41.7%) who died prior to 28 days, systemic concentrations of acylcarnitines and interleukin (IL)-8 were elevated at baseline and persisted at T24 and T48 throughout early resuscitation. Concentrations of pyruvate, IL-6, tumor necrosis factor-α, and angiopoietin-2 decreased at a slower rate in patients who died. Two groups emerged from clustering of baseline metabolites. Group 1 was characterized by higher levels of acylcarnitines, greater organ dysfunction at baseline and postresuscitation (p < 0.05), and greater mortality over 1 year (p < 0.001). CONCLUSIONS: Among patients with septic shock, nonsurvivors exhibited a more profound and persistent dysregulation in protein analytes attributable to neutrophil activation and disruption of mitochondrial-related metabolism than survivors.

20.
Front Psychiatry ; 14: 1169787, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168086

RESUMEN

Psychosis spectrum disorders (PSDs), as well as other severe mental illnesses where psychotic features may be present, like bipolar disorder, are associated with intrinsic metabolic abnormalities. Antipsychotics (APs), the cornerstone of treatment for PSDs, incur additional metabolic adversities including weight gain. Currently, major gaps exist in understanding psychosis illness biomarkers, as well as risk factors and mechanisms for AP-induced weight gain. Metabolomic profiles may identify biomarkers and provide insight into the mechanistic underpinnings of PSDs and antipsychotic-induced weight gain. In this 12-week prospective naturalistic study, we compared serum metabolomic profiles of 25 cases within approximately 1 week of starting an AP to 6 healthy controls at baseline to examine biomarkers of intrinsic metabolic dysfunction in PSDs. In 17 of the case participants with baseline and week 12 samples, we then examined changes in metabolomic profiles over 12 weeks of AP treatment to identify metabolites that may associate with AP-induced weight gain. In the cohort with pre-post data (n = 17), we also compared baseline metabolomes of participants who gained ≥5% baseline body weight to those who gained <5% to identify potential biomarkers of antipsychotic-induced weight gain. Minimally AP-exposed cases were distinguished from controls by six fatty acids when compared at baseline, namely reduced levels of palmitoleic acid, lauric acid, and heneicosylic acid, as well as elevated levels of behenic acid, arachidonic acid, and myristoleic acid (FDR < 0.05). Baseline levels of the fatty acid adrenic acid was increased in 11 individuals who experienced a clinically significant body weight gain (≥5%) following 12 weeks of AP exposure as compared to those who did not (FDR = 0.0408). Fatty acids may represent illness biomarkers of PSDs and early predictors of AP-induced weight gain. The findings may hold important clinical implications for early identification of individuals who could benefit from prevention strategies to reduce future cardiometabolic risk, and may lead to novel, targeted treatments to counteract metabolic dysfunction in PSDs.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda