Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Opt Express ; 28(6): 8282-8290, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32225456

RESUMEN

We provide experimental evidence that stable vortex-solitons in nematic liquid crystals, termed vortex nematicons, can be generated in planar cells without any external biases, neither electric nor magnetic. We report on nonlinear vortices with extraordinary-wave beams in various undoped samples, pin-pointing how material nonlocality and birefringence aid their stable propagation. Finally, we also demonstrate confinement and waveguiding of an incoherent co-polarized probe signal by the nonlinear vortex.

2.
Opt Lett ; 45(8): 2451-2453, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32287256

RESUMEN

We report on vortex-solitons generated in dye-doped nematic liquid crystals by a purely optothermal nonlocal nonlinearity. This response not only supports stable doughnut-shaped ordinary-wave beams with orbital angular momentum, but also provides self-confined solitary waves with excellent trajectory and profile stability over time. Using an interferometric technique, we also investigate the role of nonlocal nonlinearity in the non-illuminated axial region.

3.
Opt Lett ; 44(1): 167-170, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30645576

RESUMEN

Employing a low-frequency external electric field bias in nematic liquid crystals with negative dielectric anisotropy, we demonstrate that the trajectory fluctuations of reorientational spatial solitons can be substantially reduced, improving confinement and polarization purity of the output beams.

4.
Opt Lett ; 44(9): 2268-2269, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31042200

RESUMEN

This erratum amends some errors in Opt. Lett.43, 2296 (2018)OPLEDP0146-959210.1364/OL.43.002296.

5.
Opt Lett ; 43(10): 2296-2299, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29762576

RESUMEN

We demonstrate thermo-optic control on the propagation of optical spatial solitons in nematic liquid crystals. By varying the sample temperature, both linear and nonlinear optical properties of the reorientational material are modulated by acting on the refractive indices, the birefringence, and the elastic response. As a result, both the trajectory and transverse confinement of spatial solitons can be adjusted, demonstrating an effective means to tune and readdress self-induced optical waveguides.

6.
Opt Express ; 25(20): 23893-23898, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-29041338

RESUMEN

We study light propagation in nematic liquid crystals in the context of spatial optical solitons formation. We propose a simple analytical model with multiplicative nonlinearity, which represents (qualitatively) the liquid crystal response by comprising the competition between focusing (reorientational) and defocusing (thermal) nonlocal nonlinearities. We show that at sufficiently high input power the interplay between both nonlinearities leads to the formations of two-peak solitons, which represent supermodes of the self-induced extended waveguide structure. We explain the beam splitting mechanism, discuss threshold effects and conclude that similar phenomena might be present in other media with competing nonlocal nonlinearities.

7.
Opt Lett ; 40(22): 5235-8, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26565843

RESUMEN

We investigate the role of competing nonlinear responses in the formation and propagation of bright spatial solitons. We use nematic liquid crystals (NLCs) exhibiting both thermo-optic and reorientational nonlinearities with continuous-wave beams. In a suitably prepared dye-doped sample and dual beam collinear geometry, thermal heating in the visible affects reorientational self-focusing in the near infrared, altering light propagation and self-trapping.

8.
Opt Express ; 22(24): 30257-66, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25606956

RESUMEN

In this article we present a new all-optical method to measure elastic constants connected with twist and bend deformations. The method is based on the optical Freedericksz threshold effect induced by the linearly polarized electro-magnetic wave. In the experiment elastic constants are measured of commonly used liquid crystals 6CHBT and E7 and two new nematic mixtures with low birefringence. The proposed method is neither very sensitive on the variation of cell thickness, beam waist or the power of a light beam nor does it need any special design of a liquid crystal cell. The experimental results are in good agreement with the values obtain by other methods based on an electro-optical effect.


Asunto(s)
Elasticidad , Luz , Cristales Líquidos/química , Óptica y Fotónica/métodos
9.
Opt Lett ; 39(22): 6399-402, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25490478

RESUMEN

We demonstrate the evolution of higher order one-dimensional guided modes into two-dimensional solitary waves in a reorientational medium. The observations, carried out at two different wavelengths in chiral nematic liquid crystals, are in good agreement with a simple nonlocal nonlinear model.

10.
Chaos ; 24(4): 043136, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25554056

RESUMEN

We report results of the analysis for families of one-dimensional (1D) trapped solitons, created by competing self-focusing (SF) quintic and self-defocusing (SDF) cubic nonlinear terms. Two trapping potentials are considered, the harmonic-oscillator (HO) and delta-functional ones. The models apply to optical solitons in colloidal waveguides and other photonic media, and to matter-wave solitons in Bose-Einstein condensates loaded into a quasi-1D trap. For the HO potential, the results are obtained in an approximate form, using the variational and Thomas-Fermi approximations, and in a full numerical form, including the ground state and the first antisymmetric excited one. For the delta-functional attractive potential, the results are produced in a fully analytical form, and verified by means of numerical methods. Both exponentially localized solitons and weakly localized trapped modes are found for the delta-functional potential. The most essential conclusions concern the applicability of competing Vakhitov-Kolokolov (VK) and anti-VK criteria to the identification of the stability of solitons created under the action of the competing SF and SDF terms.

11.
Opt Express ; 20(13): 13923-38, 2012 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-22714458

RESUMEN

The exact molecular reorientation model for nematic liquid crystals taking into account all diagonal Frank elastic constants and using two angles to describe director orientation is presented. Solutions and simplified equations are shown for the most common planar and chiral configurations. Gaussian beam propagation simulated using fully vectorial Beam Propagation Method in nonlinear case is also provided. Detailed comparison between exact solutions and single Frank constant approximation is made. However, no significant differences between these two models were found neither in beam propagation nor in polarization distribution, some difficulties may occur in choosing single Frank constant especially when it comes to quantitative results. Presented results correspond to a propagation of a beam of the Gaussian or topologically similar shapes.


Asunto(s)
Cristales Líquidos/química , Modelos Químicos , Nefelometría y Turbidimetría/métodos , Simulación por Computador , Módulo de Elasticidad , Luz , Conformación Molecular , Refractometría , Dispersión de Radiación
12.
Materials (Basel) ; 15(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36363385

RESUMEN

We study an optical device designed for converting the polarized Gaussian beam into an optical vortex of tunable polarization. The proposed device comprised a set of three specially prepared nematic liquid crystal cells and a nano-spherical phase plate fabricated from two types of glass nanotubes. This device generates a high-quality optical vortex possessing one of the multiple polarization states from the uniformly polarized input Gaussian beam. Its small size, simplicity of operation, and electrical steering can be easily integrated into the laboratory and industrial systems, making it a promising alternative to passive vortex retarders and spatial light modulators.

13.
Opt Lett ; 36(13): 2566-8, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21725481

RESUMEN

We investigate the attractive interaction between spatial solitons in nematic liquid crystals with a tunable nonlinearity and a constant nonlocality. The experimental study, carried out by controlling the orientation of the optic axis via the electro-optic response, shows how the interactions depend on reorientation, in excellent agreement with a model accounting for the anisotropic nature of the dielectric.

14.
Materials (Basel) ; 11(10)2018 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-30261684

RESUMEN

Employing several nematic liquid crystal mixtures, we investigate how the thermo-optic response of nonlinear birefringent soft-matter affects the propagation of light beams and the features of self-induced waveguides. We address the formation of optical spatial solitons and the control of their trajectories versus temperature, comparing the measurements with the expectations based on a simplified model, showing an excellent agreement. Moreover, in a guest⁻host mixture with an absorbing dye dopant, we study the competition between reorientational and thermal nonlinearities, demonstrating that the two processes can be adjusted independently in order to tune the soliton properties, i.e., trajectory and confinement strength. Our results are an important contribution to better comprehend the role played by material properties on linear and nonlinear beam propagation, as well as their exploitation for signal processing and addressing.

15.
Sci Rep ; 7(1): 12385, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28959058

RESUMEN

We demonstrate that optical spatial solitons with non-rectilinear trajectories can be made to propagate in a uniaxial dielectric with a transversely modulated orientation of the optic axis. Exploiting the reorientational nonlinearity of nematic liquid crystals and imposing a linear variation of the background alignment of the molecular director, we observe solitons whose trajectories have either a monotonic or a non-monotonic curvature in the observation plane of propagation, depending on either the synergistic or counteracting roles of wavefront distortion and birefringent walk-off, respectively. The observed effect is well modelled in the weakly nonlinear regime using momentum conservation of the self-collimated beams in the presence of the spatial nonlocality of the medium response. Since reorientational solitons can act as passive waveguides for other weak optical signals, these results introduce a wealth of possibilities for all-optical signal routing and light-induced photonic interconnects.

16.
Phys Rev E ; 96(1-1): 012703, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29347250

RESUMEN

We investigate nonlinear optical propagation of continuous-wave (CW) beams in bulk nematic liquid crystals. We thoroughly analyze the competing roles of reorientational and thermal nonlinearity with reference to self-focusing/defocusing and, eventually, the formation of nonlinear diffraction-free wavepackets, the so-called spatial optical solitons. To this extent we refer to dye-doped nematic liquid crystals in planar cells excited by a single CW beam in the highly nonlocal limit. To adjust the relative weight between the two nonlinear responses, we employ two distinct wavelengths, inside and outside the absorption band of the dye, respectively. Different concentrations of the dye are considered in order to enhance the thermal effect. The theoretical analysis is complemented by numerical simulations in the highly nonlocal approximation based on a semi-analytic approach. Theoretical results are finally compared to experimental results in the Nematic Liquid Crystals (NLC) 4-trans-4'-n-hexylcyclohexylisothiocyanatobenzene (6CHBT) doped with Sudan Blue dye.

17.
Sci Rep ; 6: 22923, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26975651

RESUMEN

We investigate a non-homogeneous layered structure encompassing dual spatial dispersion: continuous diffraction in one transverse dimension and discrete diffraction in the orthogonal one. Such dual diffraction can be balanced out by one and the same nonlinear response, giving rise to light self-confinement into astigmatic spatial solitons: self-focusing can compensate for the spreading of a bell-shaped beam, leading to quasi-2D solitary wavepackets which result from 1D transverse self-localization combined with a discrete soliton. We demonstrate such intensity-dependent beam trapping in chiral soft matter, exhibiting one-dimensional discrete diffraction along the helical axis and one-dimensional continuous diffraction in the orthogonal plane. In nematic liquid crystals with suitable birefringence and chiral arrangement, the reorientational nonlinearity is shown to support bell-shaped solitary waves with simple astigmatism dependent on the medium birefringence as well as on the dual diffraction of the input wavepacket. The observations are in agreement with a nonlinear nonlocal model for the all-optical response.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(3 Pt 2B): 036603, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12366276

RESUMEN

Recently, it has been shown experimentally that the nonlinearity in nematic liquid crystals can govern spatial solitons in both waveguide and bulk geometry. Such solitons require a few milliwatts of light power and can be controlled by the state of light polarization or by an external electrical field. In this paper a detailed theoretical analysis of optical solitary waves in nematic liquid crystal waveguides is presented. The self-focusing is induced by reorientation nonlinearity in the homeotropically aligned nematic layer. This configuration corresponds to the experimental setup in which we previously observed such solitary waves. The theoretical results presented in this paper correlate exactly with the experiments.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda