RESUMEN
The outer layer of endothelial cells (ECs), consisting of the endothelial glycocalyx (eGC) and the cortex (CTX), provides a protective barrier against vascular diseases. Structural and functional impairments of their mechanical properties are recognized as hallmarks of endothelial dysfunction and can lead to cardiovascular events, such as acute myocardial infarction (AMI). This study investigated the effects of AMI on endothelial nanomechanics and function and the use of exogenous recombinant syndecan-1 (rSyn-1), a major component of the eGC, as recovering agent. ECs were exposed in vitro to serum samples collected from patients with AMI. In addition, in situ ECs of ex vivo aorta preparations derived from a mouse model for AMI were employed. Effects were quantified by using atomic force microscopy-based nanoindentation measurements, fluorescence staining, and histologic examination of the mouse hearts. AMI serum samples damaged eGC/CTX and augmented monocyte adhesion to the endothelial surface. In particular, the anaphylatoxins C3a and C5a played an important role in these processes. The impairment of endothelial function could be prevented by rSyn-1 treatment. In the mouse model of myocardial infarction, pretreatment with rSyn-1 alleviated eGC/CTX deterioration and reduced cardiomyocyte damage in histologic analyses. However, echocardiographic measurements did not indicate a functional benefit. These results provide new insights into the underlying mechanisms of AMI-induced endothelial dysfunction and perspectives for future studies on the benefit of rSyn-1 in post-AMI treatment.
Asunto(s)
Células Endoteliales , Infarto del Miocardio , Animales , Ratones , Células Endoteliales/patología , Glicocálix/patología , Sindecano-1 , Miocitos Cardíacos , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patologíaRESUMEN
CD46 is a complement regulator with important roles related to the immune response. CD46 functions as a pathogen receptor and is a potent costimulator for the induction of interferon-γ (IFN-γ)-secreting effector T helper type 1 (T(H)1) cells and their subsequent switch into interleukin 10 (IL-10)-producing regulatory T cells. Here we identified the Notch family member Jagged1 as a physiological ligand for CD46. Furthermore, we found that CD46 regulated the expression of Notch receptors and ligands during T cell activation and that disturbance of the CD46-Notch crosstalk impeded induction of IFN-γ and switching to IL-10. Notably, CD4(+) T cells from CD46-deficient patients and patients with hypomorphic mutations in the gene encoding Jagged1 (Alagille syndrome) failed to mount appropriate T(H)1 responses in vitro and in vivo, which suggested that CD46-Jagged1 crosstalk is responsible for the recurrent infections in subpopulations of these patients.
Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Activación de Linfocitos , Proteína Cofactora de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Células TH1/inmunología , Adulto , Síndrome de Alagille/genética , Síndrome de Alagille/inmunología , Animales , Células Cultivadas , Niño , Preescolar , Humanos , Interferón gamma/metabolismo , Interleucina-10/inmunología , Interleucina-10/metabolismo , Proteína Jagged-1 , Ratones , Ratones SCID , Ratones Transgénicos , Interferencia de ARN , ARN Interferente Pequeño , Proteínas Serrate-Jagged , Células TH1/metabolismo , alfa Catenina/genéticaRESUMEN
Preterm infants are susceptible to infection and their defense against pathogens relies largely on innate immunity. The role of the complement system for the immunological vulnerability of preterm infants is less understood. Anaphylatoxin C5a and its receptors C5aR1 and -2 are known to be involved in sepsis pathogenesis, with C5aR1 mainly exerting pro-inflammatory effects. Our explorative study aimed to determine age-dependent changes in the expression of C5aR1 and C5aR2 in neonatal immune cell subsets. Via flow cytometry, we analyzed the expression pattern of C5a receptors on immune cells isolated from peripheral blood of preterm infants (n = 32) compared to those of their mothers (n = 25). Term infants and healthy adults served as controls. Preterm infants had a higher intracellular expression of C5aR1 on neutrophils than control individuals. We also found a higher expression of C5aR1 on NK cells, particularly on the cytotoxic CD56dim subset and the CD56- subset. Immune phenotyping of other leukocyte subpopulations revealed no gestational-age-related differences for the expression of and C5aR2. Elevated expression of C5aR1 on neutrophils and NK cells in preterm infants may contribute to the phenomenon of "immunoparalysis" caused by complement activation or to sustained hyper-inflammatory states. Further functional analyses are needed to elucidate the underlying mechanisms.
Asunto(s)
Neutrófilos , Receptor de Anafilatoxina C5a , Recién Nacido , Humanos , Recien Nacido Prematuro , Células Asesinas Naturales , AnafilatoxinasRESUMEN
The activation of the complement system by canonical and non-canonical mechanisms results in the generation of multiple C3 and C5 cleavage fragments including anaphylatoxins C3a and C5a as well as opsonizing C3b/iC3b. It is now well appreciated that anaphylatoxins not only act as pro-inflammatory mediators but as immunoregulatory molecules that control the activation status of cells and tissue at several levels. Likewise, C3b/iC3b is more than the opsonizing fragment that facilitates engulfment and destruction of targets by phagocytes. In the circulation, it also facilitates the transport and delivery of bacteria and immune complexes to phagocytes, through a process known as immune adherence, with consequences for adaptive immunity. Here, we will discuss non-classical immunoregulatory properties of C3 and C5 cleavage fragments. We highlight the influence of anaphylatoxins on Th2 and Th17 cell development during allergic asthma with a particular emphasis on their role in the modulation of CD11b+ conventional dendritic cells and monocyte-derived dendritic cells. Furthermore, we discuss the control of anaphylatoxin-mediated activation of dendritic cells and allergic effector cells by adaptive immune mechanisms that involve allergen-specific IgG1 antibodies and plasma or regulatory T cell-derived IL-10 production. Finally, we take a fresh look at immune adherence with a particular focus on the development of antibacterial cytotoxic T-cell responses.
Asunto(s)
Complemento C3/metabolismo , Complemento C5/metabolismo , Células Dendríticas/inmunología , Hipersensibilidad/inmunología , Células TH1/inmunología , Células Th17/inmunología , Inmunidad Adaptativa , Animales , Diferenciación Celular , Activación de Complemento , Complemento C3/inmunología , Complemento C5/inmunología , Humanos , Inmunidad Innata , Inmunomodulación , ProteolisisRESUMEN
The biological significance of C5a receptor [(C5aR)2/C5L2], a seven-transmembrane receptor binding C5a and C5adesArg, remains ill-defined. Specific ligation of C5aR2 inhibits C5a-induced ERK1/2 activation, strengthening the view that C5aR2 regulates C5aR1-mediated effector functions. Although C5aR2 and C5aR1 are often coexpressed, a detailed picture of C5aR2 expression in murine cells and tissues is still lacking. To close this gap, we generated a floxed tandem dye (td)Tomato-C5aR2 knock-in mouse that we used to track C5aR2 expression in tissue-residing and circulating immune cells. We found the strongest C5aR2 expression in the brain, bone marrow, and airways. All myeloid-derived cells expressed C5aR2, although with different intensities. C5aR2 expression in blood and tissue neutrophils was strong and homogeneous. Specific ligation of C5aR2 in neutrophils from tdTomato-C5aR2 mice blocked C5a-driven ERK1/2 phosphorylation, demonstrating functionality of C5aR2 in the reporter mice. In contrast to neutrophils, we found tissue-specific differences in C5aR2 expression in eosinophils, macrophages, and dendritic cell subsets. Naive and activated T cells stained negative for C5aR2, whereas B cells from different tissues homogeneously expressed C5aR2. Also, NK cell subsets in blood and spleen strongly expressed C5aR2. Activation of C5aR2 in NK cells suppressed IL-12/IL-18-induced IFN-γ production. Intratracheal IL-33 challenge resulted in decreased C5aR2 expression in pulmonary eosinophils and monocyte-derived dendritic cells. In summary, we provide a detailed map of murine C5aR2 immune cell expression in different tissues under steady-state conditions and upon pulmonary inflammation. The C5aR2 knock-in mouse will help to reliably track and conditionally delete C5aR2 expression in experimental models of inflammation.
Asunto(s)
Regulación de la Expresión Génica/inmunología , Leucocitos/inmunología , Neumonía/inmunología , Receptor de Anafilatoxina C5a/inmunología , Animales , Técnicas de Sustitución del Gen , Genes Reporteros/inmunología , Leucocitos/patología , Ratones , Ratones Transgénicos , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Neumonía/genética , Neumonía/patología , Receptor de Anafilatoxina C5a/genéticaRESUMEN
C3a exerts multiple biologic functions through activation of its cognate C3a receptor. C3-/- and C3aR-/- mice have been instrumental in defining important roles of the C3a/C3aR axis in the regulation of acute and chronic inflammatory diseases, including ischemia/reperfusion injury, allergic asthma, autoimmune nephritis, and rheumatoid arthritis. Surprisingly little is known about C3aR expression and function in immune and stromal cells. To close this gap, we generated a floxed tandem-dye Tomato (tdTomato)-C3aR reporter knock-in mouse, which we used to monitor C3aR expression in cells residing in the lung, airways, lamina propria (LP) of the small intestine, brain, visceral adipose tissue, bone marrow (BM), spleen, and the circulation. We found a strong expression of tdTomato-C3aR in the brain, lung, LP, and visceral adipose tissue, whereas it was minor in the spleen, blood, BM, and the airways. Most macrophage and eosinophil populations were tdTomato-C3aR+ Interestingly, most tissue eosinophils and some macrophage populations expressed C3aR intracellularly. BM-derived dendritic cells (DCs), lung-resident cluster of differentiation (CD) 11b+ conventional DCs (cDCs) and monocyte-derived DCs, LP CD103+, and CD11b+ cDCs but not pulmonary CD103+ cDCs and splenic DCs were tdTomato-C3aR+ Surprisingly, neither BM, blood, lung neutrophils, nor mast cells expressed C3aR. Similarly, all lymphoid-derived cells were tdTomato-C3aR-, except some LP-derived type 3 innate lymphoid cells. Pulmonary and LP-derived epithelial cells expressed at best minor levels of C3aR. In summary, we provide novel insights into the expression pattern of C3aR in mice. The floxed C3aR knock-in mouse will help to reliably track and conditionally delete C3aR expression in experimental models of inflammation.
Asunto(s)
Genes Reporteros , Receptores Acoplados a Proteínas G/genética , Animales , Médula Ósea/inmunología , Médula Ósea/metabolismo , Encéfalo/inmunología , Encéfalo/metabolismo , Complemento C3a/metabolismo , Eosinófilos/inmunología , Eosinófilos/metabolismo , Expresión Génica , Técnicas de Sustitución del Gen , Pulmón/inmunología , Pulmón/metabolismo , Ratones , Monocitos/inmunología , Monocitos/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Receptores Acoplados a Proteínas G/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Bazo/inmunología , Bazo/metabolismoRESUMEN
Many of the biological properties of C5a are mediated through activation of its receptor (C5aR1), the expression of which has been demonstrated convincingly on myeloid cells, such as neutrophils, monocytes, and macrophages. In contrast, conflicting results exist regarding C5aR1 expression in dendritic cells (DCs) and lymphoid lineage cells. In this article, we report the generation of a floxed GFP-C5aR1 reporter knock-in mouse. Using this mouse strain, we confirmed strong C5aR1 expression in neutrophils from bone marrow, blood, lung, and spleen, as well as in peritoneal macrophages. Further, we show C5aR1 expression in lung eosinophils, lung- and lamina propria-resident and alveolar macrophages, bone marrow-derived DCs, and lung-resident CD11b(+) and monocyte-derived DCs, whereas intestinal and pulmonary CD103(+) DCs stained negative. Also, some splenic NKT cells expressed GFP, whereas naive NK cells and B2 cells lacked GFP expression. Finally, we did not observe any C5aR1 expression in naive or activated CD4(+) Th cells in vitro or in vivo. Mating the floxed GFP-C5aR1 mouse strain with LysMCre mice, we were able to specifically delete C5aR1 in neutrophils and macrophages, whereas C5aR1 expression was retained in DCs. In summary, our findings suggest that C5aR1 expression in mice is largely restricted to cells of the myeloid lineage. The novel floxed C5aR1 reporter knock-in mouse will prove useful to track C5aR1 expression in experimental models of acute and chronic inflammation and to conditionally delete C5aR1 in immune cells.
Asunto(s)
Células Mieloides/inmunología , Receptor de Anafilatoxina C5a/biosíntesis , Animales , Separación Celular , Citometría de Flujo , Técnicas de Sustitución del Gen , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor de Anafilatoxina C5a/análisis , Receptor de Anafilatoxina C5a/inmunologíaRESUMEN
BACKGROUND: Plasmacytosis (ie, an expansion of plasma cell populations to much greater than the homeostatic level) occurs in the context of various immune disorders and plasma cell neoplasia. This condition is often associated with immunodeficiency that causes increased susceptibility to severe infections. Yet a causative link between plasmacytosis and immunodeficiency has not been established. OBJECTIVE: Because recent studies have identified plasma cells as a relevant source of the immunosuppressive cytokine IL-10, we sought to investigate the role of IL-10 during conditions of polyclonal and neoplastic plasmacytosis for the regulation of immunity and its effect on inflammation and immunodeficiency. METHODS: We used flow cytometry, IL-10 reporter (Vert-X) and B cell-specific IL-10 knockout mice, migration assays, and antibody-mediated IL-10 receptor blockade to study plasmacytosis-associated IL-10 expression and its effect on inflammation and Streptococcus pneumoniae infection in mice. ELISA was used to quantify IL-10 levels in patients with myeloma. RESULTS: IL-10 production was a common feature of normal and neoplastic plasma cells in mice, and IL-10 levels increased with myeloma progression in patients. IL-10 directly inhibited neutrophil migration toward the anaphylatoxin C5a and suppressed neutrophil-dependent inflammation in a murine model of autoimmune disease. MOPC.315.BM murine myeloma leads to an increased incidence of bacterial infection in the airways, which was reversed after IL-10 receptor blockade. CONCLUSION: We provide evidence that plasmacytosis-associated overexpression of IL-10 inhibits neutrophil migration and neutrophil-mediated inflammation but also promotes immunodeficiency.
Asunto(s)
Interleucina-10/inmunología , Células Plasmáticas/inmunología , Animales , Línea Celular Tumoral , Complemento C5a/inmunología , Humanos , Enfermedades del Sistema Inmune/inmunología , Inflamación/inmunología , Interleucina-10/genética , Trastornos Leucocíticos/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Mieloma Múltiple/inmunología , Neutrófilos/inmunología , Infecciones Neumocócicas/inmunologíaRESUMEN
Changes in the glycosylation of immunoglobulins have been shown to modulate immune homeostasis and disease pathology. In this sense it has been shown that highly galactosylated but not agalactosylated IgG1 immune complexes (ICs) inhibit C5aR-mediated pro-inflammatory immune responses via the assembly of FcγRIIB-Dectin-1 receptor complexes. In this study we demonstrated that Galectin-3, a galactose-binding lectin that is known to cross-link proteins on cell-surfaces via binding their N-glycans, bound to highly-galactosylated, but not agalactosylated IgG1. Further, Galectin-3 was essential for the IC-mediated inhibition of C5a-induced neutrophil chemotaxis in vitro. Taken together our results indicate that Galectin-3 mediates the interaction of ICs with the FcγRIIB-Dectin-1 receptor complex for delivering immunoregulatory signals to inhibit C5aR-mediated immune responses.
Asunto(s)
Complejo Antígeno-Anticuerpo/inmunología , Galectina 3/inmunología , Inmunoglobulina G/inmunología , Receptor de Anafilatoxina C5a/inmunología , Animales , Complejo Antígeno-Anticuerpo/metabolismo , Western Blotting , Movimiento Celular/inmunología , Células Cultivadas , Quimiotaxis de Leucocito/inmunología , Galactosa/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Inmunoglobulina G/metabolismo , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Lectinas Tipo C/inmunología , Lectinas Tipo C/metabolismo , Complejo Mediador/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/citología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Unión Proteica/inmunología , Receptor de Anafilatoxina C5a/metabolismo , Receptores de IgG/inmunología , Receptores de IgG/metabolismo , Transducción de Señal/inmunologíaRESUMEN
Thioredoxin (Trx)-1 is a small, ubiquitously expressed redox-active protein with known important cytosolic functions. However, Trx1 is also upregulated in response to various stress stimuli, is found both at the cell surface and secreted into plasma, and has known anti-inflammatory and antiapoptotic properties. Previous animal studies have demonstrated that exogenous Trx1 delivery can have therapeutic effects in a number of disease models and have implicated an interaction of Trx1 with the complement system. We found that Trx1 is expressed in a redox-active form at the surface of HUVEC and acts as an inhibitor of complement deposition in a manner dependent on its Cys-Gly-Pro-Cys active site. Inhibition occurred at the point of the C5 convertase of complement, regulating production of C5a and the membrane attack complex. A truncated form of Trx1 also exists in vivo, Trx80, which has separate nonoverlapping functions compared with the full-length Trx1. We found that Trx80 activates the classical and alternative pathways of complement activation, leading to C5a production, but the inflammatory potential of this was also limited by the binding of inhibitors C4b-binding protein and factor H. This study adds a further role to the known anti-inflammatory properties of Trx1 and highlights the difference in function between the full-length and truncated forms.
Asunto(s)
Complemento C5a/inmunología , Fragmentos de Péptidos/inmunología , Tiorredoxinas/inmunología , Animales , Activación de Complemento , Convertasas de Complemento C3-C5/inmunología , Convertasas de Complemento C3-C5/metabolismo , Proteína de Unión al Complemento C4b/inmunología , Proteína de Unión al Complemento C4b/metabolismo , Complemento C5a/metabolismo , Factor H de Complemento/inmunología , Factor H de Complemento/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Peritonitis/inmunología , Peritonitis/metabolismo , Peritonitis/patología , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Transducción de Señal , Tiorredoxinas/química , Tiorredoxinas/metabolismoRESUMEN
Introduction: The function of the second receptor for the complement cleavage product C5a, C5aR2, is poorly understood and often neglected in the immunological context. Using mice with a global deficiency of C5aR2, we have previously reported an important role of this receptor in the pathogenesis of the neutrophil-driven autoimmune disease epidermolysis bullosa acquisita (EBA). Based on in vitro analyses, we hypothesized that the absence of C5aR2 specifically on neutrophils is the cause of the observed differences. Here, we report the generation of a new mouse line with a LysM-specific deficiency of C5aR2. Methods: LysM-specific deletion of C5aR2 was achieved by crossing LysMcre mice with tdTomato-C5ar2fl/fl mice in which the tdTomato-C5ar2 gene is flanked by loxP sites. Passive EBA was induced by subcutaneous injection of rabbit anti-mouse collagen type VII IgG. The effects of targeted deletion of C5ar2 on C5a-induced effector functions of neutrophils were examined in in vitro assays. Results: We confirm the successful deletion of C5aR2 at both the genetic and protein levels in neutrophils. The mice appeared healthy and the expression of C5aR1 in bone marrow and blood neutrophils was not negatively affected by LysM-specific deletion of C5aR2. Using the antibody transfer mouse model of EBA, we found that the absence of C5aR2 in LysM-positive cells resulted in an overall amelioration of disease progression, similar to what we had previously found in mice with global deficiency of C5aR2. Neutrophils lacking C5aR2 showed decreased activation after C5a stimulation and increased expression of the inhibitory Fcγ receptor FcγRIIb. Discussion: Overall, with the data presented here, we confirm and extend our previous findings and show that C5aR2 in neutrophils regulates their activation and function in response to C5a by potentially affecting the expression of Fcγ receptors and CD11b. Thus, C5aR2 regulates the finely tuned interaction network between immune complexes, Fcγ receptors, CD11b, and C5aR1 that is important for neutrophil recruitment and sustained activation. This underscores the importance of C5aR2 in the pathogenesis of neutrophil-mediated autoimmune diseases.
Asunto(s)
Enfermedades Autoinmunes , Epidermólisis Ampollosa Adquirida , Animales , Ratones , Complemento C5a/metabolismo , Activación Neutrófila , Neutrófilos , Receptor de Anafilatoxina C5a/genética , Receptor de Anafilatoxina C5a/metabolismo , Receptores de Complemento/metabolismo , Receptores de IgG/metabolismoRESUMEN
OBJECTIVE: To examine concentrations of circulating antibodies targeting C3a and C5a complement receptors in antineutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) and analyze their association with disease activity. METHODS: Concentrations of antibodies against C3a and C5a complement receptors (anti-C3aR and anti-C5aR) and plasma complement fragments C3a and C5a were determined in patients with AAV (n = 110; granulomatosis with polyangiitis [GPA; n = 82] or microscopic polyangiitis [MPA; n = 28]), systemic lupus erythematosus (SLE) patients as disease controls (n = 36), and healthy donors (n = 220). C3aR and C5aR expression by circulating neutrophils, monocytes, and T cells was analyzed using flow cytometry. Clinical data were assessed at time of serum sampling and during follow-up for 60 months. RESULTS: In AAV, anti-C3aR and anti-C5aR antibodies were decreased (P = 0.0026 and P ≤ 0.0001, respectively). In remission, anti-C3aR antibody concentrations rose to values comparable to healthy donors, whereas anti-C5aR antibody concentrations did not. In GPA, anti-C5a and anti-C5aR antibody concentrations inversely correlated with each other (r = -0.6831, P = 0.0127). In newly diagnosed GPA, decreased concentrations of anti-C5aR antibodies but not anti-C3aR antibodies were associated with disease activity (P = 0.0009). Moreover, low anti-C5aR antibodies were associated with relapse in GPA (hazard ratio 3.54, P = 0.0009) and MPA (hazard ratio 4.41, P = 0.0041). The frequency of C5aR-expressing cells within T cell populations was increased in GPA (P = 0.0021 for CD4+ T cells; P = 0.0118 for CD8+ T cells), but not in MPA. CONCLUSION: Low concentrations of anti-C5aR antibodies reflect disease activity and are associated with an increased risk for relapse in AAV.
Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Poliangitis Microscópica , Humanos , Anticuerpos Anticitoplasma de Neutrófilos , Receptores de Complemento/metabolismo , Recurrencia , Complemento C5aRESUMEN
Approximately 5% of the world-wide population is affected by autoimmune diseases. Overall, autoimmune diseases are still difficult to treat, impose a high burden on patients, and have a significant economic impact. Like other complex diseases, e.g., cancer, autoimmune diseases develop over several years. Decisive steps in the development of autoimmune diseases are (i) the development of autoantigen-specific lymphocytes and (often) autoantibodies and (ii) potentially clinical disease manifestation at a later stage. However, not all healthy individuals with autoantibodies develop disease manifestations. Identifying autoantibody-positive healthy individuals and monitoring and inhibiting their switch to inflammatory autoimmune disease conditions are currently in their infancy. The switch from harmless to inflammatory autoantigen-specific T and B-cell and autoantibody responses seems to be the hallmark for the decisive factor in inflammatory autoimmune disease conditions. Accordingly, biomarkers allowing us to predict this progression would have a significant impact. Several factors, such as genetics and the environment, especially diet, smoking, exposure to pollutants, infections, stress, and shift work, might influence the progression from harmless to inflammatory autoimmune conditions. To inspire research directed at defining and ultimately targeting autoimmune predisease, here, we review published evidence underlying the progression from health to autoimmune predisease and ultimately to clinically manifest inflammatory autoimmune disease, addressing the following 3 questions: (i) what is the current status, (ii) what is missing, (iii) and what are the future perspectives for defining and modulating autoimmune predisease.
Asunto(s)
Enfermedades Autoinmunes , Autoinmunidad , Humanos , Enfermedades Autoinmunes/etiología , Autoanticuerpos , Autoantígenos , LinfocitosRESUMEN
The complement system (CS) is an ancient and highly conserved part of the innate immune system with important functions in immune defense. The multiple fragments bind to specific receptors on innate and adaptive immune cells, the activation of which translates the initial humoral innate immune response (IR) into cellular innate and adaptive immunity. Dysregulation of the CS has been associated with the development of several autoimmune disorders such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), ANCA-associated vasculitis, and autoimmune bullous dermatoses (AIBDs), where complement drives the inflammatory response in the effector phase. The role of the CS in autoimmunity is complex. On the one hand, complement deficiencies were identified as risk factors to develop autoimmune disorders. On the other hand, activation of complement can drive autoimmune responses. The anaphylatoxins C3a and C5a are potent mediators and regulators of inflammation during the effector phase of autoimmunity through engagement of specific anaphylatoxin receptors, i.e., C3aR, C5aR1, and C5aR2 either on or in immune cells. In addition to their role in innate IRs, anaphylatoxins regulate humoral and cellular adaptive IRs including B-cell and T-cell activation, differentiation, and survival. They regulate B- and T-lymphocyte responses either directly or indirectly through the activation of anaphylatoxin receptors via dendritic cells that modulate lymphocyte function. Here, we will briefly review our current understanding of the complex roles of anaphylatoxins in the regulation of immunologic tolerance and the early events driving autoimmunity and the implications of such regulation for therapeutic approaches that target the CS.
Asunto(s)
Anafilatoxinas , Enfermedades Autoinmunes , Autoinmunidad , Proteínas del Sistema Complemento , Humanos , Linfocitos TRESUMEN
Pemphigoid diseases are autoimmune chronic inflammatory skin diseases, which are characterized by blistering of the skin and/or mucous membranes, and circulating and tissue-bound autoantibodies. The well-established pathomechanisms comprise autoantibodies targeting various structural proteins located at the dermal-epidermal junction, leading to complement factor binding and activation. Several effector cells are thus attracted and activated, which in turn inflict characteristic tissue damage and subepidermal blistering. Moreover, the detection of linear complement deposits in the skin is a diagnostic hallmark of all pemphigoid diseases. However, recent studies showed that blistering might also occur independently of complement. This review reassesses the importance of complement in pemphigoid diseases based on current research by contrasting and contextualizing data from in vitro, murine and human studies.
Asunto(s)
Penfigoide Ampolloso , Animales , Autoanticuerpos , Vesícula , Proteínas del Sistema Complemento , Humanos , Ratones , PielRESUMEN
Bullous pemphigoid (BP), the by far most frequent autoimmune subepidermal blistering disorder (AIBD), is characterized by the deposition of autoantibodies against BP180 (type XVII collagen; Col17) and BP230 as well as complement components at the dermal-epidermal junction (DEJ). The mechanisms of complement activation in BP patients, including the generation of C5a and regulation of its two cognate C5aRs, i.e., C5aR1 and C5aR2, are incompletely understood. In this study, transcriptome analysis of perilesional and non-lesional skin biopsies of BP patients compared to site-, age-, and sex-matched controls showed an upregulated expression of C5AR1, C5AR2, CR1, and C3AR1 and other complement-associated genes in perilesional BP skin. Of note, increased expressions of C5AR2 and C3AR1 were also observed in non-lesional BP skin. Subsequently, double immunofluorescence (IF) staining revealed T cells and macrophages as the dominant cellular sources of C5aR1 in early lesions of BP patients, while C5aR2 mainly expressed on mast cells and eosinophils. In addition, systemic levels of various complement factors and associated molecules were measured in BP patients and controls. Significantly higher plasma levels of C3a, CD55, and mannose-binding lectin-pathway activity were found in BP patients compared to controls. Finally, the functional relevance of C5aR1 and C5aR2 in BP was explored by two in vitro assays. Specific inhibition of C5aR1, resulted in significantly reduced migration of human neutrophils toward the chemoattractant C5a, whereas stimulation of C5aR2 showed no effect. In contrast, the selective targeting of C5aR1 and/or C5aR2 had no effect on the release of reactive oxygen species (ROS) from Col17-anti-Col17 IgG immune complex-stimulated human leukocytes. Collectively, this study delineates a complex landscape of activated complement receptors, complement factors, and related molecules in early BP skin lesions. Our results corroborate findings in mouse models of pemphigoid diseases that the C5a/C5aR1 axis is pivotal for attracting inflammatory cells to the skin and substantiate our understanding of the C5a/C5aR1 axis in human BP. The broad expression of C5aRs on multiple cell types critical for BP pathogenesis call for clinical studies targeting this axis in BP and other complement-mediated AIBDs.
Asunto(s)
Penfigoide Ampolloso , Enfermedades de la Piel , Animales , Ratones , Humanos , Piel , Biopsia , Recuento de Leucocitos , Receptor de Anafilatoxina C5aRESUMEN
Platelets contribute to the regulation of tissue neovascularization, although the specific factors underlying this function are unknown. Here, we identified the complement anaphylatoxin C5a-mediated activation of C5a receptor 1 (C5aR1) on platelets as a negative regulatory mechanism of vessel formation. We showed that platelets expressing C5aR1 exert an inhibitory effect on endothelial cell functions such as migration and 2D and 3D tube formation. Growth factor- and hypoxia-driven vascularization was markedly increased in C5ar1-/- mice. Platelet-specific deletion of C5aR1 resulted in a proangiogenic phenotype with increased collateralization, capillarization and improved pericyte coverage. Mechanistically, we found that C5a induced preferential release of CXC chemokine ligand 4 (CXCL4, PF4) from platelets as an important antiangiogenic paracrine effector molecule. Interfering with the C5aR1-CXCL4 axis reversed the antiangiogenic effect of platelets both in vitro and in vivo.In conclusion, we identified a mechanism for the control of tissue neovascularization through C5a/C5aR1 axis activation in platelets and subsequent induction of the antiangiogenic factor CXCL4.
Asunto(s)
Plaquetas/metabolismo , Factor Plaquetario 4/metabolismo , Receptor de Anafilatoxina C5a/genética , Receptor de Anafilatoxina C5a/metabolismo , Inductores de la Angiogénesis , Animales , Activación de Complemento , Complemento C5a , Inflamación , Ratones , Ratones Noqueados , Receptor de Anafilatoxina C5a/deficiencia , Receptores CXCR3/genética , Transducción de SeñalRESUMEN
The vascular addressins mucosal addressin cell adhesion molecule-1, P-selectin and ICAM-1 permit alpha(4)beta(7)-integrin-expressing DC, especially those of the myeloid lineage (CD11c(+)CD11b(+) DC), to access the pregnant mouse uterus. Injection of blocking monoclonal antibodies against mucosal addressin cell adhesion molecule-1 in P-selectin(-/-) mice or experimental approaches with beta7-integrin(-/-) or ICAM-1(-/-) mice revealed that limited access or absence of CD11c(+)CD11b(+) DC at the maternal/fetal interface negatively affects the frequency, size and functional properties of uterine NK (uNK) cells. Adoptive transfer of DC obtained from WT mice into beta7-integrin(-/-) mice abrogates these effects and emphasizes the importance of DC in uNK cell differentiation. Interestingly, those implantation sites lacking CD11c(+)CD11b(+) DC are characterized by decreased IL-15 and IL-12 mRNA and/or protein levels. Chronic administration of IL-15 in these mice gives rise to uNK cell numbers and size comparable to those of WT mice, whereas additional injection of IL-12 positively affects the IFN-gamma expression of uNK cells. Real-time RT-PCR and protein arrays performed with isolated uterine DC underline the role of DC as a source of IL-15 and IL-12 in the pregnant mouse uterus.