Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Genome Res ; 32(4): 710-725, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35264449

RESUMEN

The unicellular ciliate Paramecium contains a large vegetative macronucleus with several unusual characteristics, including an extremely high coding density and high polyploidy. As macronculear chromatin is devoid of heterochromatin, our study characterizes the functional epigenomic organization necessary for gene regulation and proper Pol II activity. Histone marks (H3K4me3, H3K9ac, H3K27me3) reveal no narrow peaks but broad domains along gene bodies, whereas intergenic regions are devoid of nucleosomes. Our data implicate H3K4me3 levels inside ORFs to be the main factor associated with gene expression, and H3K27me3 appears in association with H3K4me3 in plastic genes. Silent and lowly expressed genes show low nucleosome occupancy, suggesting that gene inactivation does not involve increased nucleosome occupancy and chromatin condensation. Because of a high occupancy of Pol II along highly expressed ORFs, transcriptional elongation appears to be quite different from that of other species. This is supported by missing heptameric repeats in the C-terminal domain of Pol II and a divergent elongation system. Our data imply that unoccupied DNA is the default state, whereas gene activation requires nucleosome recruitment together with broad domains of H3K4me3. In summary, gene activation and silencing in Paramecium run counter to the current understanding of chromatin biology.


Asunto(s)
Histonas , Paramecium , Cromatina/genética , Código de Histonas , Histonas/genética , Histonas/metabolismo , Nucleosomas/genética , Paramecium/genética , Paramecium/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
2.
Mol Ecol ; 32(22): 6027-6043, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37830492

RESUMEN

Social insects are models for studies of phenotypic plasticity. Ant queens and workers vary in fecundity and lifespan, which are enhanced and extended in queens. Yet, the regulatory mechanisms underlying this variation are not well understood. Ant queens live and reproduce for years, so that they need to protect their germline from transposable element (TE) activity, which may be redundant in short-lived, often sterile workers. We analysed the expression of two protective classes of small RNAs, microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), in various tissues, castes and age classes of the ant Temnothorax rugatulus. In queens, piRNAs were highly abundant in ovaries with TEs being their clear targets, with reduced but still detectable piRNA-specific ping-pong signatures in thorax and brains. piRNA pathway activity varied little with age in queens. Moreover, the reduced ovaries of workers also exhibited similar piRNA activity and this not only in young, fertile workers, but also in older foragers with regressed ovaries. Therefore, these ants protect their germline through piRNA activity, regardless of ovarian development, age or caste, even in sterile workers often considered the soma of the superorganism. Our tissue-specific miRNA analysis detected the expression of 304 miRNAs, of which 105 were expressed in all tissues, 10 enriched in the brain, three in the thorax, whereas 83 were ovarian-specific. We identified ovarian miRNAs whose expression was related to caste, fecundity and age, and which likely regulate group-specific gene expression. sRNA shifts in young- to middle-aged queens were minor, suggesting delayed senescence in this reproductive caste.


Asunto(s)
Hormigas , MicroARNs , Animales , ARN de Interacción con Piwi , Hormigas/genética , Fertilidad/genética , MicroARNs/genética , Células Germinativas
3.
Nucleic Acids Res ; 48(W1): W193-W199, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32459338

RESUMEN

A current challenge in genomics is to interpret non-coding regions and their role in transcriptional regulation of possibly distant target genes. Genome-wide association studies show that a large part of genomic variants are found in those non-coding regions, but their mechanisms of gene regulation are often unknown. An additional challenge is to reliably identify the target genes of the regulatory regions, which is an essential step in understanding their impact on gene expression. Here we present the EpiRegio web server, a resource of regulatory elements (REMs). REMs are genomic regions that exhibit variations in their chromatin accessibility profile associated with changes in expression of their target genes. EpiRegio incorporates both epigenomic and gene expression data for various human primary cell types and tissues, providing an integrated view of REMs in the genome. Our web server allows the analysis of genes and their associated REMs, including the REM's activity and its estimated cell type-specific contribution to its target gene's expression. Further, it is possible to explore genomic regions for their regulatory potential, investigate overlapping REMs and by that the dissection of regions of large epigenomic complexity. EpiRegio allows programmatic access through a REST API and is freely available at https://epiregio.de/.


Asunto(s)
Elementos Reguladores de la Transcripción , Programas Informáticos , Secuenciación de Inmunoprecipitación de Cromatina , Enfermedad/genética , Regulación de la Expresión Génica , Humanos , Factores de Transcripción/metabolismo
4.
RNA Biol ; 18(sup2): 757-769, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34663180

RESUMEN

Most sRNA biogenesis mechanisms involve either RNAse III cleavage or ping-pong amplification by different Piwi proteins harbouring slicer activity. Here, we follow the question why the mechanism of transgene-induced silencing in the ciliate Paramecium needs both Dicer activity and two Ptiwi proteins. This pathway involves primary siRNAs produced from non-translatable transgenes and secondary siRNAs from targeted endogenous loci. Our data does not indicate any signatures from ping-pong amplification but Dicer cleavage of long dsRNA. Ptiwi13 and 14 prefer different sub-cellular localizations and different preferences for primary and secondary siRNAs but do not load them mutually exclusive. Both Piwis enrich for antisense RNAs and show a general preference for uridine-rich sRNAs along the entire sRNA length. In addition, Ptiwi14-loaded siRNAs show a 5´-U signature. Our data indicates both Ptiwis and 2´-O-methylation contributing to strand selection of Dicer cleaved siRNAs. This unexpected function of the two distinct vegetative Piwis extends the increasing knowledge of the diversity of Piwi functions in diverse silencing pathways. We describe an unusual mode of action of Piwi proteins extending not only the great variety of Piwi-associated RNAi pathways but moreover raising the question whether this could have been the primordial one.


Asunto(s)
Proteínas Argonautas/metabolismo , Cromatina/genética , Cromatina/metabolismo , Silenciador del Gen , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Paramecium tetraurelia , Unión Proteica , Proteínas Protozoarias/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Ribonucleasa III/metabolismo , Transgenes
5.
Nucleic Acids Res ; 47(15): 8036-8049, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31251800

RESUMEN

Extensive research has characterized distinct exogenous RNAi pathways interfering in gene expression during vegetative growth of the unicellular model ciliate Paramecium. However, role of RNAi in endogenous transcriptome regulation, and environmental adaptation is unknown. Here, we describe the first genome-wide profiling of endogenous sRNAs in context of different transcriptomic states (serotypes). We developed a pipeline to identify, and characterize 2602 siRNA producing clusters (SRCs). Our data show no evidence that SRCs produce miRNAs, and in contrast to other species, no preference for strand specificity of siRNAs. Interestingly, most SRCs overlap coding genes and a separate group show siRNA phasing along the entire open reading frame, suggesting that the mRNA transcript serves as a source for siRNAs. Integrative analysis of siRNA abundance and gene expression levels revealed surprisingly that mRNA and siRNA show negative as well as positive associations. Two RNA-dependent RNA Polymerase mutants, RDR1 and RDR2, show a drastic loss of siRNAs especially in phased SRCs accompanied with increased mRNA levels. Importantly, most SRCs depend on both RDRs, reminiscent to primary siRNAs in the RNAi against exogenous RNA, indicating mechanistic overlaps between exogenous and endogenous RNAi contributing to flexible transcriptome adaptation.


Asunto(s)
Adaptación Fisiológica/genética , Paramecium/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Transcriptoma , Perfilación de la Expresión Génica , Ontología de Genes , Genoma de Protozoos/genética , MicroARNs/genética , ARN Mensajero/genética
6.
DNA Res ; 27(1)2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32339224

RESUMEN

Supply of exogenous dsRNA (exo-dsRNA), either by injection or by feeding, is a fast and powerful alternative to classical knockout studies. The biotechnical potential of feeding techniques is evident from the numerous studies focusing on oral administration of dsRNA to control pests and viral infection in crops/animal farming. We aimed to dissect the direct and indirect effects of exo-dsRNA feeding on the endogenous short interfering RNA (endo-siRNA) populations of the free-living ciliate Paramecium. We introduced dsRNA fragments against Dicer1 (DCR1), involved in RNA interference (RNAi) against exo- and few endo-siRNAs, and an RNAi unrelated gene, ND169. Any feeding, even the control dsRNA, diminishes genome wide the accumulation of endo-siRNAs and mRNAs. This cannot be explained by direct off-target effects and suggests mechanistic overlaps of the exo- and endo-RNAi mechanisms. Nevertheless, we observe a stronger down-regulation of mRNAs in DCR1 feeding compared with ND169 knockdown. This is likely due to the direct involvement of DCR1 in endo-siRNA accumulation. We further observed a cis-regulatory effect on mRNAs that overlap with phased endo-siRNAs. This interference of exo-dsRNA with endo-siRNAs warrants further investigations into secondary effects in target species/consumers, risk assessment of dsRNA feeding applications, and environmental pollution with dsRNA.


Asunto(s)
Paramecium/genética , Interferencia de ARN , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/metabolismo , ARN Mensajero/metabolismo , Ribonucleasa III/genética
7.
PeerJ ; 7: e6710, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30993044

RESUMEN

Understanding the role of short-interfering RNA (siRNA) in diverse biological processes is of current interest and often approached through small RNA sequencing. However, analysis of these datasets is difficult due to the complexity of biological RNA processing pathways, which differ between species. Several properties like strand specificity, length distribution, and distribution of soft-clipped bases are few parameters known to guide researchers in understanding the role of siRNAs. We present RAPID, a generic eukaryotic siRNA analysis pipeline, which captures information inherent in the datasets and automatically produces numerous visualizations as user-friendly HTML reports, covering multiple categories required for siRNA analysis. RAPID also facilitates an automated comparison of multiple datasets, with one of the normalization techniques dedicated for siRNA knockdown analysis, and integrates differential expression analysis using DESeq2. AVAILABILITY AND IMPLEMENTATION: RAPID is available under MIT license at https://github.com/SchulzLab/RAPID. We recommend using it as a conda environment available from https://anaconda.org/bioconda/rapid.

8.
Genes (Basel) ; 9(2)2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29466322

RESUMEN

Genes or alleles can interact by small RNAs in a homology dependent manner meaning that short interfering (siRNAs) can act in trans at the chromatin level producing stable and heritable silencing phenotypes. Because of the puzzling data on endogenous paramutations, their impact contributing to adaptive evolution in a Lamarckian manner remains unknown. An increasing number of studies characterizes the underlying siRNA accumulation pathways using transgene experiments. Also in the ciliate Paramecium tetraurelia, we induce trans silencing on the chromatin level by injection of truncated transgenes. Here, we characterize the efficiency of this mechanism at different temperatures showing that silencing of the endogenous genes is temperature dependent. Analyzing different transgene constructs at different copy numbers, we dissected whether silencing efficiency is due to varying precursor RNAs or siRNA accumulation. Our data shows that silencing efficiency correlates with more efficient accumulation of primary siRNAs at higher temperatures rather than higher expression of precursor RNAs. Due to higher primary levels, secondary siRNAs also show temperature dependency and interestingly increase their relative proportion to primary siRNAs. Our data shows that efficient trans silencing on the chromatin level in P. tetraurelia depends on environmental parameters, thus being an important epigenetic factor limiting regulatory effects of siRNAs.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda