Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Neurosci Lett ; 763: 136181, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34416345

RESUMEN

Motopsin is a serine protease that plays a crucial role in synaptic functions. Loss of motopsin function causes severe intellectual disability in humans. In this study, we evaluated the role of motopsin in the neuropathological development of cognitive impairments following chemotherapy, also known as chemobrain. Motopsin knockout (KO) and wild-type (WT) mice were intravenously injected with doxorubicin (Dox) or saline four times every 8 days and were evaluated for open field, novel object recognition, and passive avoidance tests. Parvalbumin-positive neurons in the hippocampus were immunohistochemically analyzed. Dox administration significantly decreased the total distance in the open field test in both WT and motopsin KO mice without affecting the duration spent in the center square. A significant interaction between the genotype and drug treatment was detected in the recognition index (the rate to investigate a novel object) in the novel object recognition test, although Dox treatment did not affect the total investigation time. Additionally, Dox treatment significantly decreased the recognition index in WT mice, whereas it tended to increase the recognition index in motopsin KO mice. Dox treatment did not affect the latency to enter a dark compartment in either WT or motopsin KO mice in the passive avoidance test. Interestingly, Dox treatment increased the parvalbumin-positive neurons in the stratum oriens of the hippocampus CA1 region of only WT mice, not motopsin KO mice. Our data suggest that motopsin deficiency imparted partial insensitivity to Dox-induced hippocampal impairments. Alternatively, motopsin may contribute to the neuropathology of chemobrain.


Asunto(s)
Región CA1 Hipocampal/patología , Región CA3 Hipocampal/patología , Deterioro Cognitivo Relacionado con la Quimioterapia/patología , Doxorrubicina/efectos adversos , Serina Endopeptidasas/deficiencia , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/efectos de los fármacos , Deterioro Cognitivo Relacionado con la Quimioterapia/etiología , Modelos Animales de Enfermedad , Humanos , Locomoción/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Parvalbúminas/metabolismo , Serina Endopeptidasas/genética
2.
Neuropsychiatr Dis Treat ; 14: 2255-2268, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233183

RESUMEN

BACKGROUND: Both environmental and genetic conditions contribute to the robust development of neuronal circuits and adulthood behaviors. Loss of motopsin gene function causes severe intellectual disability in humans and enhanced social behavior in mice. Furthermore, childhood maltreatment is a risk factor for some psychiatric disorders, and children with disabilities have a higher risk of abuse than healthy children. MATERIALS AND METHODS: In this study, we investigated the effects of maternal separation (MS) on adulthood behaviors of motopsin knockout (KO) and wild-type (WT) mice. RESULTS: The MS paradigm decreased the duration that WT mice stayed in the center area of an open field, but not for motopsin KO mice; however, it decreased the novel object recognition index in both genotypes. In the marble burying test, motopsin KO mice buried fewer marbles than WT mice, regardless of the rearing conditions. The MS paradigm slightly increased and reduced open arm entry in the elevated plus maze by WT and motopsin KO mice, respectively. In the three-chamber test, the rate of sniffing the animal cage was increased by the MS paradigm only for motopsin KO mice. After the three-chamber test, motopsin KO mice had fewer cFos-positive cells in the prelimbic cortex, which is involved in emotional response, than WT mice. In the infralimbic cortex, the MS paradigm decreased the number of cFos-positive cells in motopsin KO mice. CONCLUSION: Our results suggest that motopsin deficiency and childhood adversity independently affect some behaviors, but they may interfere with each other for other behaviors. Defective neuronal circuits in the prefrontal cortex may add to this complexity.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda