Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Inorg Chem ; 55(17): 8587-94, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27500980

RESUMEN

The zwitterionic bipyridinium carboxylate ligand 1,1'-bis(4-carboxyphenyl)-4,4'-bipyridinium (pc1) in the presence of cadmium chloride affords novel porous coordination polymers (PCPs): [Cd4(pc1)3Cl6]·CdCl4·guest (1) crystallizing in the P3̅1c space group. In the structure, [Cd4Cl6(CO2)6] building units are linked together by six pc1 ligands, leading to a 3D high-symmetrical network exhibiting hexagonal channels along the c axis. The walls of this PCP consist of cationic electron-acceptor bipyridinium units. The PCP 1 reversibly adsorbs H2O and CH3OH up to about 0.1 g/g at saturation showing the adsorption isotherms characteristic of a moderately hydrophilic sorbent. Adsorption of ammonia (NH3) follows a different pattern, reaching an exceptional uptake of 0.39 g/g (22.3 mmol/g) after the first adsorption cycle. Although the crystalline structure of 1 collapses after the first adsorption, the solid can be regenerated and maintains the capacity of 0.29 g/g (17 mmol/g) in the following cycles. We found that the high NH3 uptake is due to a combination of pore filling taking place below 150 h·Pa and chemisorption occurring at higher pressures. The latter process was shown to involve two phenomena: (i) coordination of NH3 molecules to Cd(2+) cations as follows from (113)Cd NMR and (ii) strong donor-acceptor interactions between NH3 molecules and pc1 ligands.

2.
ACS Appl Mater Interfaces ; 14(11): 13801-13811, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35261228

RESUMEN

The ultrathin nanocomposite coatings made of zirconium oxide (ZrO2), zinc oxide (ZnO), and titanium oxide (TiO2) on stainless steel (SS) were prepared by the radio frequency sputtering method, and the effects of the nanocomposite coating on corrosion protection and antibacterial activities of nanocomposite coated SS were investigated. Scanning electron microscopy was conducted to observe surface morphology of nanocomposite coatings with distinct distribution of grains with the formation on SS substrate. From the electrochemical impedance spectroscopy results, ZrO2/ZnO/TiO2 nanocomposite coating showed excellent corrosion protection performance at 37 °C during immersion in simulated body fluid and saliva solution for 12 and 4 weeks, respectively. The impedance of ZrO2/ZnO/TiO2 (40/10/50) nanocomposite coated SS exhibited values about 5 orders of magnitude higher than that of uncoated SS with polarization at the low-frequency region. Cell viability of ZrO2/ZnO/TiO2 nanocomposite coated SS was examined under mouse fibroblasts culture (L929), and it was observed that the nanocomposite coating improves proliferation through effective cellular attachment compared to uncoated SS. From the antimicrobial activity results, ZrO2/ZnO/TiO2 nanocomposite-coated SS showed killing efficiency of 81.2% and 72.4% against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, respectively.


Asunto(s)
Nanocompuestos , Óxido de Zinc , Animales , Antibacterianos/química , Antibacterianos/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Corrosión , Ensayo de Materiales , Ratones , Acero Inoxidable/química , Titanio , Óxido de Zinc/farmacología
3.
Chem Commun (Camb) ; 49(87): 10272-4, 2013 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-24067860

RESUMEN

Using a slow liquid-gas diffusion method, the mixed-valence viologen salt (MV)2(BF4)3 (1) and the radical cation salt (MV)(BF4) (2) are crystallized. Both structures contain regular stacks of MV˙(+) radical cations (2) or alternating MV˙(+) and MV(2+) entities (1). A short intrastack intermolecular separation (3.23 Å) unprecedently reveals strong interactions between MV(2+) and MV˙(+) in 1.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda