Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Chem Rev ; 123(13): 8127-8153, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37285604

RESUMEN

The development of late-stage functionalization (LSF) methodologies, particularly C-H functionalization, has revolutionized the field of organic synthesis. Over the past decade, medicinal chemists have begun to implement LSF strategies into their drug discovery programs, allowing for the drug discovery process to become more efficient. Most reported applications of late-stage C-H functionalization of drugs and drug-like molecules have been to rapidly diversify screening libraries to explore structure-activity relationships. However, there has been a growing trend toward the use of LSF methodologies as an efficient tool for improving drug-like molecular properties of promising drug candidates. In this review, we have comprehensively reviewed recent progress in this emerging area. Particular emphasis is placed on case studies where multiple LSF techniques were implemented to generate a library of novel analogues with improved drug-like properties. We have critically analyzed the current scope of LSF strategies to improve drug-like properties and commented on how we believe LSF can transform drug discovery in the future. Overall, we aim to provide a comprehensive survey of LSF techniques as tools for efficiently improving drug-like molecular properties, anticipating its continued uptake in drug discovery programs.


Asunto(s)
Descubrimiento de Drogas , Relación Estructura-Actividad , Técnicas de Química Sintética
2.
J Neuroinflammation ; 21(1): 7, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178159

RESUMEN

BACKGROUND: Widescale evidence points to the involvement of glia and immune pathways in the progression of Alzheimer's disease (AD). AD-associated iPSC-derived glial cells show a diverse range of AD-related phenotypic states encompassing cytokine/chemokine release, phagocytosis and morphological profiles, but to date studies are limited to cells derived from PSEN1, APOE and APP mutations or sporadic patients. The aim of the current study was to successfully differentiate iPSC-derived microglia and astrocytes from patients harbouring an AD-causative PSEN2 (N141I) mutation and characterise the inflammatory and morphological profile of these cells. METHODS: iPSCs from three healthy control individuals and three familial AD patients harbouring a heterozygous PSEN2 (N141I) mutation were used to derive astrocytes and microglia-like cells and cell identity and morphology were characterised through immunofluorescent microscopy. Cellular characterisation involved the stimulation of these cells by LPS and Aß42 and analysis of cytokine/chemokine release was conducted through ELISAs and multi-cytokine arrays. The phagocytic capacity of these cells was then indexed by the uptake of fluorescently-labelled fibrillar Aß42. RESULTS: AD-derived astrocytes and microglia-like cells exhibited an atrophied and less complex morphological appearance than healthy controls. AD-derived astrocytes showed increased basal expression of GFAP, S100ß and increased secretion and phagocytosis of Aß42 while AD-derived microglia-like cells showed decreased IL-8 secretion compared to healthy controls. Upon immunological challenge AD-derived astrocytes and microglia-like cells showed exaggerated secretion of the pro-inflammatory IL-6, CXCL1, ICAM-1 and IL-8 from astrocytes and IL-18 and MIF from microglia. CONCLUSION: Our study showed, for the first time, the differentiation and characterisation of iPSC-derived astrocytes and microglia-like cells harbouring a PSEN2 (N141I) mutation. PSEN2 (N141I)-mutant astrocytes and microglia-like cells presented with a 'primed' phenotype characterised by reduced morphological complexity, exaggerated pro-inflammatory cytokine secretion and altered Aß42 production and phagocytosis.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Humanos , Astrocitos/metabolismo , Microglía/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Interleucina-8/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Citocinas/metabolismo , Fenotipo , Péptidos beta-Amiloides/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo
3.
Brain Behav Immun ; 114: 414-429, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37716378

RESUMEN

The purinoceptor P2X7R is a promising therapeutic target for tauopathies, including Alzheimer's disease (AD). Pharmacological inhibition or genetic knockdown of P2X7R ameliorates cognitive deficits and reduces pathological tau burden in mice that model aspects of tauopathy, including mice expressing mutant human frontotemporal dementia (FTD)-causing forms of tau. However, disagreements remain over which glial cell types express P2X7R and therefore the mechanism of action is unresolved. Here, we show that P2X7R protein levels increase in human AD post-mortem brain, in agreement with an upregulation of P2RX7 mRNA observed in transcriptome profiles from the AMP-AD consortium. P2X7R protein increases mirror advancing Braak stage and coincide with synapse loss. Using RNAScope we detect P2RX7 mRNA in microglia and astrocytes in human AD brain, including in the vicinity of senile plaques. In cultured microglia, P2X7R activation modulates the NLRP3 inflammasome pathway by promoting the formation of active complexes and release of IL-1ß. In astrocytes, P2X7R activates NFκB signalling and increases production of the cytokines CCL2, CXCL1 and IL-6 together with the acute phase protein Lcn2. To further explore the role of P2X7R in a disease-relevant context, we expressed wild-type or FTD-causing mutant forms of tau in mouse organotypic brain slice cultures. Inhibition of P2X7R reduces insoluble tau levels without altering soluble tau phosphorylation or synaptic localisation, suggesting a non-cell autonomous role of glial P2X7R on pathological tau aggregation. These findings support further investigations into the cell-type specific effects of P2X7R-targeting therapies in tauopathies.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Tauopatías , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Astrocitos/metabolismo , Encéfalo/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Microglía/metabolismo , ARN Mensajero/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatías/metabolismo
4.
Biotechnol Bioeng ; 120(10): 3079-3091, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37395340

RESUMEN

Current research tools for preclinical drug development such as rodent models and two-dimensional immortalized monocultures have failed to serve as effective translational models for human central nervous system (CNS) disorders. Recent advancements in the development of induced pluripotent stem cells (iPSCs) and three-dimensional (3D) culturing can improve the in vivo-relevance of preclinical models, while generating 3D cultures though novel bioprinting technologies can offer increased scalability and replicability. As such, there is a need to develop platforms that combine iPSC-derived cells with 3D bioprinting to produce scalable, tunable, and biomimetic cultures for preclinical drug discovery applications. We report a biocompatible poly(ethylene glycol)-based matrix which incorporates Arg-Gly-Asp and Tyr-Ile-Gly-Ser-Arg peptide motifs and full-length collagen IV at a stiffness similar to the human brain (1.5 kPa). Using a high-throughput commercial bioprinter we report the viable culture and morphological development of monocultured iPSC-derived astrocytes, brain microvascular endothelial-like cells, neural progenitors, and neurons in our novel matrix. We also show that this system supports endothelial-like vasculogenesis and enhances neural differentiation and spontaneous activity. This platform forms a foundation for more complex, multicellular models to facilitate high-throughput translational drug discovery for CNS disorders.


Asunto(s)
Bioimpresión , Células Madre Pluripotentes Inducidas , Humanos , Astrocitos , Bioimpresión/métodos , Diferenciación Celular , Sistema Nervioso Central , Células Madre , Impresión Tridimensional
5.
Brain ; 145(5): 1598-1609, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35202463

RESUMEN

Frontotemporal dementia refers to a group of neurodegenerative disorders characterized by behaviour and language alterations and focal brain atrophy. Amyotrophic lateral sclerosis is a rapidly progressing neurodegenerative disease characterized by loss of motor neurons resulting in muscle wasting and paralysis. Frontotemporal dementia and amyotrophic lateral sclerosis are considered to exist on a disease spectrum given substantial overlap of genetic and molecular signatures. The predominant genetic abnormality in both frontotemporal dementia and amyotrophic lateral sclerosis is an expanded hexanucleotide repeat sequence in the C9orf72 gene. In terms of brain pathology, abnormal aggregates of TAR-DNA-binding protein-43 are predominantly present in frontotemporal dementia and amyotrophic lateral sclerosis patients. Currently, sensitive and specific diagnostic and disease surveillance biomarkers are lacking for both diseases. This has impeded the capacity to monitor disease progression during life and the development of targeted drug therapies for the two diseases. The purpose of this review is to examine the status of current biofluid biomarker discovery and development in frontotemporal dementia and amyotrophic lateral sclerosis. The major pathogenic proteins implicated in different frontotemporal dementia and amyotrophic lateral sclerosis molecular subtypes and proteins associated with neurodegeneration and the immune system will be discussed. Furthermore, the use of mass spectrometry-based proteomics as an emerging tool to identify new biomarkers in frontotemporal dementia and amyotrophic lateral sclerosis will be summarized.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Enfermedad de Pick , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Humanos , Enfermedades Neurodegenerativas/patología
6.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38203193

RESUMEN

Improved human-relevant preclinical models of coronary artery disease (CAD) are needed to improve translational research and drug discovery. Mitochondrial dysfunction and associated oxidative stress contribute to endothelial dysfunction and are a significant factor in the development and progression of CAD. Endothelial colony-forming cells (ECFCs) can be derived from peripheral blood mononuclear cells (PBMCs) and offer a unique potentially personalised means for investigating new potential therapies targeting important components of vascular function. We describe the application of the high-throughput and confocal Opera Phenix® High-Content Screening System to examine mitochondrial superoxide (mROS) levels, mitochondrial membrane potential, and mitochondrial area in both established cell lines and patient-derived ECFCs simultaneously. Unlike traditional plate readers, the Opera Phenix® is an imaging system that integrates automated confocal microscopy, precise fluorescent detection, and multi-parameter algorithms to visualize and precisely quantify targeted biological processes at a cellular level. In this study, we measured mROS production in human umbilical vein endothelial cells (HUVECs) and patient-derived ECFCs using the mROS production probe, MitoSOXTM Red. HUVECs exposed to oxidized low-density lipoprotein (oxLDL) increased mROS levels by 47.7% (p < 0.0001). A pooled group of patient-derived ECFCs from participants with CAD (n = 14) exhibited 30.9% higher mROS levels compared to patients with no CAD when stimulated with oxLDL (n = 14; p < 0.05). When tested against a small group of candidate compounds, this signal was attenuated by PKT-100 (36.22% reduction, p = 0.03), a novel P2X7 receptor antagonist. This suggests the P2X7 receptor as a valid target against excess mROS levels. As such, these findings highlight the potential of the MitoSOX-Opera Phenix technique to be used for drug discovery efforts in CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Humanos , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Superóxidos , Leucocitos Mononucleares , Mitocondrias , Células Endoteliales de la Vena Umbilical Humana
7.
Bioorg Med Chem Lett ; 71: 128837, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35640763

RESUMEN

The purinergic 2Y type 12 receptor (P2Y12R) is a well-known biological target for anti-thrombotic drugs due to its role in platelet aggregation and blood clotting. While the importance of the P2Y12R in the periphery has been known for decades, much less is known about its expression and roles in the central nervous system (CNS), where it is expressed exclusively on microglia - the first responders to brain insults and neurodegeneration. Several seminal studies have shown that P2Y12 is a robust, translatable biomarker for anti-inflammatory and neuroprotective microglial phenotypes in models of degenerative diseases such as multiple sclerosis and Alzheimer's disease. An enduring problem for studying this receptor in vivo, however, is the lack of selective, high-affinity small molecule ligands that can bypass the blood-brain barrier and accumulate in the CNS. In this Digest, we discuss previous attempts by researchers to target the P2Y12R in the CNS and opine on strategies that may be employed to design and assess the suitability of novel P2Y12 ligands for this purpose going forward.


Asunto(s)
Sistema Nervioso Central , Microglía , Ligandos , Microglía/metabolismo , Agregación Plaquetaria , Receptores Purinérgicos P2Y12/metabolismo , Transducción de Señal
8.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499097

RESUMEN

The use of cellular models is a common means to investigate the potency of therapeutics in pre-clinical drug discovery. However, there is currently no consensus on which model most accurately replicates key aspects of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) pathology, such as accumulation of insoluble, cytoplasmic transactive response DNA-binding protein (TDP-43) and the formation of insoluble stress granules. Given this, we characterised two TDP-43 proteinopathy cellular models that were based on different aetiologies of disease. The first was a sodium arsenite-induced chronic oxidative stress model and the second expressed a disease-relevant TDP-43 mutation (TDP-43 M337V). The sodium arsenite model displayed most aspects of TDP-43, stress granule and ubiquitin pathology seen in human ALS/FTD donor tissue, whereas the mutant cell line only modelled some aspects. When these two cellular models were exposed to small molecule chemical probes, different effects were observed across the two models. For example, a previously disclosed sulfonamide compound decreased cytoplasmic TDP-43 and increased soluble levels of stress granule marker TIA-1 in the cellular stress model without impacting these levels in the mutant cell line. This study highlights the challenges of using cellular models in lead development during drug discovery for ALS and FTD and reinforces the need to perform assessments of novel therapeutics across a variety of cell lines and aetiological models.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Proteinopatías TDP-43 , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Proteinopatías TDP-43/genética , Descubrimiento de Drogas
9.
Brain ; 143(6): 1889-1904, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32375177

RESUMEN

Hyperphosphorylation and deposition of tau in the brain characterizes frontotemporal dementia and Alzheimer's disease. Disease-associated mutations in the tau-encoding MAPT gene have enabled the generation of transgenic mouse models that recapitulate aspects of human neurodegenerative diseases, including tau hyperphosphorylation and neurofibrillary tangle formation. Here, we characterized the effects of transgenic P301S mutant human tau expression on neuronal network function in the murine hippocampus. Onset of progressive spatial learning deficits in P301S tau transgenic TAU58/2 mice were paralleled by long-term potentiation deficits and neuronal network aberrations during electrophysiological and EEG recordings. Gene-expression profiling just prior to onset of apparent deficits in TAU58/2 mice revealed a signature of immediate early genes that is consistent with neuronal network hypersynchronicity. We found that the increased immediate early gene activity was confined to neurons harbouring tau pathology, providing a cellular link between aberrant tau and network dysfunction. Taken together, our data suggest that tau pathology drives neuronal network dysfunction through hyperexcitation of individual, pathology-harbouring neurons, thereby contributing to memory deficits.


Asunto(s)
Tauopatías/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Demencia Frontotemporal/genética , Hipocampo/metabolismo , Potenciación a Largo Plazo/genética , Masculino , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Fosforilación , Tauopatías/fisiopatología
10.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34769512

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive motor neurodegenerative disease that currently has no cure and has few effective treatments. On a cellular level, ALS manifests through significant changes in the proper function of astrocytes, microglia, motor neurons, and other central nervous system (CNS) cells, leading to excess neuroinflammation and neurodegeneration. Damage to the upper and lower motor neurons results in neural and muscular dysfunction, leading to death most often due to respiratory paralysis. A new therapeutic strategy is targeting glial cells affected by senescence, which contribute to motor neuron degeneration. Whilst this new therapeutic approach holds much promise, it is yet to be trialled in ALS-relevant preclinical models and needs to be designed carefully to ensure selectivity. This review summarizes the pathways involved in ALS-related senescence, as well as known senolytic agents and their mechanisms of action, all of which may inform strategies for ALS-focused drug discovery efforts.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Senoterapéuticos/farmacología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología
11.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924599

RESUMEN

Glioblastoma display vast cellular heterogeneity, with glioblastoma stem cells (GSCs) at the apex. The critical role of GSCs in tumour growth and resistance to therapy highlights the need to delineate mechanisms that control stemness and differentiation potential of GSC. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) regulates neural progenitor cell differentiation, but its role in cancer stem cell differentiation is largely unknown. Herein, we demonstrate that DYRK1A kinase is crucial for the differentiation commitment of glioblastoma stem cells. DYRK1A inhibition insulates the self-renewing population of GSCs from potent differentiation-inducing signals. Mechanistically, we show that DYRK1A promotes differentiation and limits stemness acquisition via deactivation of CDK5, an unconventional kinase recently described as an oncogene. DYRK1A-dependent inactivation of CDK5 results in decreased expression of the stemness gene SOX2 and promotes the commitment of GSC to differentiate. Our investigations of the novel DYRK1A-CDK5-SOX2 pathway provide further insights into the mechanisms underlying glioblastoma stem cell maintenance.


Asunto(s)
Autorrenovación de las Células , Quinasa 5 Dependiente de la Ciclina/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patología , Células Madre Neoplásicas/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Factores de Transcripción SOXB1/metabolismo , Proteína Morfogenética Ósea 4/farmacología , Diferenciación Celular/efectos de los fármacos , Autorrenovación de las Células/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Humanos , Transducción de Señal/efectos de los fármacos , Quinasas DyrK
12.
J Biol Chem ; 294(38): 14149-14162, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31366728

RESUMEN

The microtubule-associated protein tau undergoes aberrant modification resulting in insoluble brain deposits in various neurodegenerative diseases, including frontotemporal dementia (FTD), progressive supranuclear palsy, and corticobasal degeneration. Tau aggregates can form in different cell types of the central nervous system (CNS) but are most prevalent in neurons. We have previously recapitulated aspects of human FTD in mouse models by overexpressing mutant human tau in CNS neurons, including a P301S tau variant in TAU58/2 mice, characterized by early-onset and progressive behavioral deficits and FTD-like neuropathology. The molecular mechanisms underlying the functional deficits of TAU58/2 mice remain mostly elusive. Here, we employed functional genomics (i.e. RNAseq) to determine differentially expressed genes in young and aged TAU58/2 mice to identify alterations in cellular processes that may contribute to neuropathy. We identified genes in cortical brain samples differentially regulated between young and old TAU58/2 mice relative to nontransgenic littermates and by comparative analysis with a dataset of CNS cell type-specific genes expressed in nontransgenic mice. Most differentially-regulated genes had known or putative roles in neurons and included presynaptic and excitatory genes. Specifically, we observed changes in presynaptic factors, glutamatergic signaling, and protein scaffolding. Moreover, in the aged mice, expression levels of several genes whose expression was annotated to occur in other brain cell types were altered. Immunoblotting and immunostaining of brain samples from the TAU58/2 mice confirmed altered expression and localization of identified and network-linked proteins. Our results have revealed genes dysregulated by progressive tau accumulation in an FTD mouse model.


Asunto(s)
Tauopatías/genética , Tauopatías/metabolismo , Proteínas tau/genética , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Demencia Frontotemporal/genética , Regulación de la Expresión Génica/genética , Humanos , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Análisis de Secuencia de ARN/métodos , Tauopatías/fisiopatología , Proteínas tau/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 319(1): H183-H191, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32469637

RESUMEN

In pulmonary hypertension (PH) a proinflammatory milieu drives pulmonary vascular remodeling, maladaptive right ventricular (RV) remodeling, and right-sided heart failure. There is an unmet need for RV-targeted pharmaco-therapies to improve mortality. Targeting of the P2X7 receptor (P2X7R) reduces pulmonary pressures; however, its effects on the RV are presently unknown. We investigated the effect of P2X7 receptor (P2X7R) inhibition on the pulmonary vasculature and RV remodeling using the novel P2X7R antagonist PKT100. C57BL/6 mice were administered intratracheal bleomycin or saline and treated with PKT100 (0.2 mg·kg-1·day-1) or DMSO vehicle. RV was assessed by right heart catheterization and echocardiography, 21 days posttreatment. Cytokines in serum and bronchoalveolar lavage fluid (BALF) were analyzed by ELISA and flow cytometry. Lungs and hearts were analyzed histologically for pulmonary vascular and RV remodeling. Focused-PCR using genes involved in RV remodeling was performed. Right ventricular systolic pressure (RVSP) was elevated in bleomycin-treated mice (30.2 ± 1.1; n = 7) compared with control mice (23.5 ± 1.0; n = 10; P = 0.008). PKT100 treatment did not alter RVSP (32.4 ± 1.8; n = 9), but it substantially improved survival (93% vs. 57% DMSO). There were no differences between DMSO and PKT100 bleomycin mice in pulmonary inflammation or remodeling. However, RV hypertrophy was reduced in PKT100 mice. Bleomycin decreased echocardiographic surrogates of RV systolic performance, which were significantly improved with PKT100. Four genes involved in RV remodeling (RPSA, Rplp0, Add2, and Scn7a) were differentially expressed between DMSO and PKT100-treated groups. The novel P2X7R inhibitor, PKT100, attenuates RV hypertrophy and improves RV contractile function and survival in a mouse model of PH independently of effects on the pulmonary vasculature. PKT100 may improve ventricular response to increased afterload and merits further investigation into the potential role of P2X7R antagonists as direct RV-focused therapies in PH.NEW & NOTEWORTHY This study demonstrates the therapeutic potential for right-sided heart failure of a novel inhibitor of the P2X7 receptor (P2X7R). Inflammatory signaling and right ventricular function were improved in a mouse model of pulmonary fibrosis with secondary pulmonary hypertension when treated with this inhibitor. Importantly, survival was also improved, suggesting that this inhibitor, and other P2X7R antagonists, could be uniquely effective in right ventricle (RV)-targeted therapy in pulmonary hypertension. This addresses a major limitation of current treatment options, where the significant improvements in pulmonary pressures ultimately do not prevent mortality due to RV failure.


Asunto(s)
Ventrículos Cardíacos/efectos de los fármacos , Hipertensión Pulmonar/tratamiento farmacológico , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Animales , Presión Sanguínea , Líquido del Lavado Bronquioalveolar/citología , Citocinas/sangre , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Remodelación Ventricular , Canales de Sodio Activados por Voltaje/genética , Canales de Sodio Activados por Voltaje/metabolismo
14.
J Neuroinflammation ; 17(1): 300, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33054803

RESUMEN

BACKGROUND: Non-invasive imaging of the activation status of microglia and the ability to identify a pro- or anti-inflammatory environment can provide valuable insights not only into pathogenesis of neuro-inflammatory and neurodegenerative diseases but also the monitoring of the efficacy of immunomodulatory therapies. P2X7R is highly expressed on pro-inflammatory microglia and [11C]SMW139, a specific P2X7R tracer for positron emission tomography imaging, showed good pharmacokinetics, stability, and brain permeability in vivo. Our objective was to evaluate the potential of [11C]SMW139 for PET imaging of neuroinflammation in vivo in the experimental autoimmune encephalomyelitis (EAE) model. METHODS: We induced EAE in Lewis rats by immunization with MBP 69-88 in complete Freund's adjuvant (CFA). We determined the affinity of [11C]SMW139 to human and rat P2X7R using saturation binding assay. Using this tracer, PET imaging was performed at the peak of disease and in the recovery phase. In vivo blocking experiments were conducted to validate the specific brain uptake of the tracer. Immunohistochemistry staining and autoradiography were performed to evaluate the level of neuroinflammation and validate the specific binding of [11C]SMW139. RESULTS: [11C]SMW139 showed good affinity for the rat P2X7R with a Kd of 20.6 ± 1.7 nM. The uptake of [11C]SMW139 was significantly higher in EAE animals at the peak of disease compared to the recovery phase but not in CFA control animals. The amplitude of increase of [11C]SMW139 uptake showed significant positive correlation with clinical scores mainly in the spinal cord (Pearson = 0.75, Spearman = 0.76; p < 0.0001). Treating EAE animals with P2X7R antagonist JNJ-47965567 blocked the uptake of [11C]SMW139 in the spinal cord, cerebellum, and brain stem, demonstrating specific accumulation of the tracer. P-glycoprotein blocking with tariquidar (30 mg/kg) did not affect tracer penetration in the brain showing that [11C]SMW139 is not a Pgp substrate. CONCLUSION: Our data shows that [11C]SMW139 is a promising PET tracer for imaging neuroinflammation and evaluating the dynamics of pro-inflammatory microglia in the brain. This can provide crucial insights into the role of microglia in disease progression and enables the development of novel treatment strategies aimed at modulating the immune response in order to promote neuroprotection.


Asunto(s)
Encéfalo/metabolismo , Radioisótopos de Carbono/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Esclerosis Múltiple/metabolismo , Tomografía de Emisión de Positrones/métodos , Receptores Purinérgicos P2X7/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encefalomielitis Autoinmune Experimental/diagnóstico por imagen , Femenino , Células HEK293 , Humanos , Masculino , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/diagnóstico por imagen , Agonistas del Receptor Purinérgico P2X/química , Agonistas del Receptor Purinérgico P2X/metabolismo , Ratas , Ratas Endogámicas Lew , Ratas Wistar
15.
Eur J Nucl Med Mol Imaging ; 47(2): 379-389, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31705174

RESUMEN

PURPOSE: The novel PET tracer [11C]SMW139 binds with high affinity to the P2X7 receptor, which is expressed on pro-inflammatory microglia. The purposes of this first in-man study were to characterise pharmacokinetics of [11C]SMW139 in patients with active relapsing remitting multiple sclerosis (RRMS) and healthy controls (HC) and to evaluate its potential to identify in vivo neuroinflammation in RRMS. METHODS: Five RRMS patients and 5 age-matched HC underwent 90-min dynamic [11C]SMW139 PET scans, with online continuous and manual arterial sampling to generate a metabolite-corrected arterial plasma input function. Tissue time activity curves were fitted to single- and two-tissue compartment models, and the model that provided the best fits was determined using the Akaike information criterion. RESULTS: The optimal model for describing [11C]SMW139 kinetics in both RRMS and HC was a reversible two-tissue compartment model with blood volume parameter and with the dissociation rate k4 fixed to the whole-brain value. Exploratory group level comparisons demonstrated an increased volume of distribution (VT) and binding potential (BPND) in RRMS compared with HC in normal appearing brain regions. BPND in MS lesions was decreased compared with non-lesional white matter, and a further decrease was observed in gadolinium-enhancing lesions. In contrast, increased VT was observed in enhancing lesions, possibly resulting from disruption of the blood-brain barrier in active MS lesions. In addition, there was a high correlation between parameters obtained from 60- to 90-min datasets, although analyses using 60-min data led to a slight underestimation in regional VT and BPND values. CONCLUSIONS: This first in-man study demonstrated that uptake of [11C]SMW139 can be quantified with PET using BPND as a measure for specific binding in healthy controls and RRMS patients. Additional studies are warranted for further clinical evaluation of this novel neuroinflammation tracer.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Encéfalo/diagnóstico por imagen , Humanos , Microglía , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Tomografía de Emisión de Positrones
16.
Bioorg Chem ; 94: 103389, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31753312

RESUMEN

Numerous post-translational modifications (PTMs) of the Parkinson's disease (PD) associated α-synuclein (α-syn) protein have been recognised to play critical roles in disease aetiology. Indeed, dysregulated phosphorylation and proteolysis are thought to modulate α-syn aggregation and disease progression. Among the PTMs, enzymatic glycosylation with N-acetylglucosamine (GlcNAc) onto the protein's hydroxylated amino acid residues is reported to deliver protective effects against its pathogenic processing. This modification has been reported to alter its pathogenic self-assembly. As such, manipulation of the protein's O-GlcNAcylation status has been proposed to offer a PD therapeutic route. However, targeting upstream cellular processes can lead to mechanism-based toxicity as the enzymes governing O-GlcNAc cycling modify thousands of acceptor substrates. Small glycopeptides that couple the protective effects of O-GlcNAc with the selectivity of recognition sequences may prove useful tools to modulate protein aggregation. Here we discuss efforts to probe the effects of various O-GlcNAc modified peptides on wild-type α-synuclein aggregation.


Asunto(s)
Acetilglucosamina/metabolismo , alfa-Sinucleína/metabolismo , Acetilglucosamina/química , Conformación de Carbohidratos , Relación Dosis-Respuesta a Droga , Glicosilación , Humanos , Enfermedad de Parkinson/metabolismo , Agregado de Proteínas/efectos de los fármacos , Relación Estructura-Actividad , alfa-Sinucleína/química , alfa-Sinucleína/genética
18.
Org Biomol Chem ; 17(20): 5086-5098, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31070218

RESUMEN

Cannabinoid type 2 receptor (CB2) is up-regulated on activated microglial cells and can potentially be used as a biomarker for PET-imaging of neuroinflammation. In this study the synthesis and pharmacological evaluation of novel fluorinated pyridyl and ethyl sulfone analogues of 2-(tert-butyl)-5-((2-fluoropyridin-4-yl)sulfonyl)-1-(2-methylpentyl)-1H-benzo[d]imidazole (rac-1a) are described. In general, the ligands showed low nanomolar potency (CB2 EC50 < 10 nM) and excellent selectivity over the CB1 subtype (>10 000×). Selected ligands 1d, 1e, 1g and 3l showing high CB2 binding affinity (Ki < 10 nM) were radiolabelled with fluorine-18 from chloropyridyl and alkyl tosylate precursors with good to high isolated radioactive yields (25-44%, non-decay corrected, at the end of synthesis). CB2-specific binding of the radioligand candidates [18F]-1d and [18F]-3l was assessed on rat spleen cryosections using in vitro autoradiography. The results warrant further in vivo evaluation of the tracer candidates as prospective CB2 PET-imaging agents.

19.
J Nat Prod ; 82(7): 1768-1778, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31282672

RESUMEN

Usnic acid is a secondary metabolite abundantly found in lichens, for which promising cytotoxic and antitumor potential has been shown. However, knowledge concerning activities of its derivatives is limited. Herein, a series of usnic acid derivatives were synthesized and their antiproliferative potency against cancer cells of different origin was assessed. Some of the synthesized compounds were more active than usnic acid. Compounds 2a and 2b inhibited survival of all tested cancer cell lines in a dose- and time-dependent manner. Their IC50 values after 48 h of treatment were ca. 3 µM for MCF-7 and PC-3 cells and 1 µM for HeLa cells, while 3a and 3b revealed antiproliferative activity only against HeLa cells. All active usnic acid derivatives induced G0/G1 arrest and a drop in the fraction of HeLa cells in the S and G2/M phases. Compounds 2a and 2b decreased the clonogenic potential of the cancer cells evaluated and induced cell cycle arrest at the G0/G1 phase and apoptosis in MCF-7 cells. Moreover, they induced massive cytoplasmic vacuolization, which was associated with elevated dynein-dependent endocytosis, a process that has not been reported for usnic acid and indicates a novel mechanism of action of its synthetic derivatives. This work also shows that naturally occurring usnic acids are promising lead compounds for the synthesis of derivatives with more favorable properties against cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Benzofuranos/síntesis química , Benzofuranos/farmacología , Proliferación Celular/efectos de los fármacos , Antineoplásicos/química , Benzofuranos/química , Células HeLa , Humanos , Células MCF-7
20.
Int J Mol Sci ; 20(13)2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31261683

RESUMEN

Neuroinflammation is an inflammatory response in the brain and spinal cord, which can involve the activation of microglia and astrocytes. It is a common feature of many central nervous system disorders, including a range of neurodegenerative disorders. An overlap between activated microglia, pro-inflammatory cytokines and translocator protein (TSPO) ligand binding was shown in early animal studies of neurodegeneration. These findings have been translated in clinical studies, where increases in TSPO positron emission tomography (PET) signal occur in disease-relevant areas across a broad spectrum of neurodegenerative diseases. While this supports the use of TSPO PET as a biomarker to monitor response in clinical trials of novel neurodegenerative therapeutics, the clinical utility of current TSPO PET radioligands has been hampered by the lack of high affinity binding to a prevalent form of polymorphic TSPO (A147T) compared to wild type TSPO. This review details recent developments in exploration of ligand-sensitivity to A147T TSPO that have yielded ligands with improved clinical utility. In addition to developing a non-discriminating TSPO ligand, the final frontier of TSPO biomarker research requires developing an understanding of the cellular and functional interpretation of the TSPO PET signal. Recent insights resulting from single cell analysis of microglial phenotypes are reviewed.


Asunto(s)
Enfermedades Neurodegenerativas/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/metabolismo , Biomarcadores/metabolismo , Humanos , Ligandos , Enfermedades Neurodegenerativas/metabolismo , Unión Proteica , Radiofármacos , Receptores de GABA/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda