Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
J Pathol ; 262(3): 310-319, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38098169

RESUMEN

Deep learning applied to whole-slide histopathology images (WSIs) has the potential to enhance precision oncology and alleviate the workload of experts. However, developing these models necessitates large amounts of data with ground truth labels, which can be both time-consuming and expensive to obtain. Pathology reports are typically unstructured or poorly structured texts, and efforts to implement structured reporting templates have been unsuccessful, as these efforts lead to perceived extra workload. In this study, we hypothesised that large language models (LLMs), such as the generative pre-trained transformer 4 (GPT-4), can extract structured data from unstructured plain language reports using a zero-shot approach without requiring any re-training. We tested this hypothesis by utilising GPT-4 to extract information from histopathological reports, focusing on two extensive sets of pathology reports for colorectal cancer and glioblastoma. We found a high concordance between LLM-generated structured data and human-generated structured data. Consequently, LLMs could potentially be employed routinely to extract ground truth data for machine learning from unstructured pathology reports in the future. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Glioblastoma , Medicina de Precisión , Humanos , Aprendizaje Automático , Reino Unido
2.
Gastroenterology ; 165(5): 1262-1275, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37562657

RESUMEN

BACKGROUND & AIMS: Diagnosis of adenocarcinoma in the liver is a frequent scenario in routine pathology and has a critical impact on clinical decision making. However, rendering a correct diagnosis can be challenging, and often requires the integration of clinical, radiologic, and immunohistochemical information. We present a deep learning model (HEPNET) to distinguish intrahepatic cholangiocarcinoma from colorectal liver metastasis, as the most frequent primary and secondary forms of liver adenocarcinoma, with clinical grade accuracy using H&E-stained whole-slide images. METHODS: HEPNET was trained on 714,589 image tiles from 456 patients who were randomly selected in a stratified manner from a pool of 571 patients who underwent surgical resection or biopsy at Heidelberg University Hospital. Model performance was evaluated on a hold-out internal test set comprising 115 patients and externally validated on 159 patients recruited at Mainz University Hospital. RESULTS: On the hold-out internal test set, HEPNET achieved an area under the receiver operating characteristic curve of 0.994 (95% CI, 0.989-1.000) and an accuracy of 96.522% (95% CI, 94.521%-98.694%) at the patient level. Validation on the external test set yielded an area under the receiver operating characteristic curve of 0.997 (95% CI, 0.995-1.000), corresponding to an accuracy of 98.113% (95% CI, 96.907%-100.000%). HEPNET surpassed the performance of 6 pathology experts with different levels of experience in a reader study of 50 patients (P = .0005), boosted the performance of resident pathologists to the level of senior pathologists, and reduced potential downstream analyses. CONCLUSIONS: We provided a ready-to-use tool with clinical grade performance that may facilitate routine pathology by rendering a definitive diagnosis and guiding ancillary testing. The incorporation of HEPNET into pathology laboratories may optimize the diagnostic workflow, complemented by test-related labor and cost savings.

3.
Radiology ; 311(1): e232741, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38625006

RESUMEN

Background Procedural details of mechanical thrombectomy in patients with ischemic stroke are important predictors of clinical outcome and are collected for prospective studies or national stroke registries. To date, these data are collected manually by human readers, a labor-intensive task that is prone to errors. Purpose To evaluate the use of the large language models (LLMs) GPT-4 and GPT-3.5 to extract data from neuroradiology reports on mechanical thrombectomy in patients with ischemic stroke. Materials and Methods This retrospective study included consecutive reports from patients with ischemic stroke who underwent mechanical thrombectomy between November 2022 and September 2023 at institution 1 and between September 2016 and December 2019 at institution 2. A set of 20 reports was used to optimize the prompt, and the ability of the LLMs to extract procedural data from the reports was compared using the McNemar test. Data manually extracted by an interventional neuroradiologist served as the reference standard. Results A total of 100 internal reports from 100 patients (mean age, 74.7 years ± 13.2 [SD]; 53 female) and 30 external reports from 30 patients (mean age, 72.7 years ± 13.5; 18 male) were included. All reports were successfully processed by GPT-4 and GPT-3.5. Of 2800 data entries, 2631 (94.0% [95% CI: 93.0, 94.8]; range per category, 61%-100%) data points were correctly extracted by GPT-4 without the need for further postprocessing. With 1788 of 2800 correct data entries, GPT-3.5 produced fewer correct data entries than did GPT-4 (63.9% [95% CI: 62.0, 65.6]; range per category, 14%-99%; P < .001). For the external reports, GPT-4 extracted 760 of 840 (90.5% [95% CI: 88.3, 92.4]) correct data entries, while GPT-3.5 extracted 539 of 840 (64.2% [95% CI: 60.8, 67.4]; P < .001). Conclusion Compared with GPT-3.5, GPT-4 more frequently extracted correct procedural data from free-text reports on mechanical thrombectomy performed in patients with ischemic stroke. © RSNA, 2024 Supplemental material is available for this article.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Femenino , Masculino , Anciano , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/cirugía , Estudios Retrospectivos , Estudios Prospectivos , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/cirugía , Trombectomía
4.
Histopathology ; 84(7): 1139-1153, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38409878

RESUMEN

BACKGROUND: Artificial intelligence (AI) has numerous applications in pathology, supporting diagnosis and prognostication in cancer. However, most AI models are trained on highly selected data, typically one tissue slide per patient. In reality, especially for large surgical resection specimens, dozens of slides can be available for each patient. Manually sorting and labelling whole-slide images (WSIs) is a very time-consuming process, hindering the direct application of AI on the collected tissue samples from large cohorts. In this study we addressed this issue by developing a deep-learning (DL)-based method for automatic curation of large pathology datasets with several slides per patient. METHODS: We collected multiple large multicentric datasets of colorectal cancer histopathological slides from the United Kingdom (FOXTROT, N = 21,384 slides; CR07, N = 7985 slides) and Germany (DACHS, N = 3606 slides). These datasets contained multiple types of tissue slides, including bowel resection specimens, endoscopic biopsies, lymph node resections, immunohistochemistry-stained slides, and tissue microarrays. We developed, trained, and tested a deep convolutional neural network model to predict the type of slide from the slide overview (thumbnail) image. The primary statistical endpoint was the macro-averaged area under the receiver operating curve (AUROCs) for detection of the type of slide. RESULTS: In the primary dataset (FOXTROT), with an AUROC of 0.995 [95% confidence interval [CI]: 0.994-0.996] the algorithm achieved a high classification performance and was able to accurately predict the type of slide from the thumbnail image alone. In the two external test cohorts (CR07, DACHS) AUROCs of 0.982 [95% CI: 0.979-0.985] and 0.875 [95% CI: 0.864-0.887] were observed, which indicates the generalizability of the trained model on unseen datasets. With a confidence threshold of 0.95, the model reached an accuracy of 94.6% (7331 classified cases) in CR07 and 85.1% (2752 classified cases) for the DACHS cohort. CONCLUSION: Our findings show that using the low-resolution thumbnail image is sufficient to accurately classify the type of slide in digital pathology. This can support researchers to make the vast resource of existing pathology archives accessible to modern AI models with only minimal manual annotations.


Asunto(s)
Neoplasias Colorrectales , Aprendizaje Profundo , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/diagnóstico , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador/métodos , Interpretación de Imagen Asistida por Computador/métodos
5.
Digestion ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865982

RESUMEN

BACKGROUND: Artificial intelligence (AI) is increasingly entering and transforming not only medical research but also clinical practice. In the last ten years, new AI methods have enabled computers to perform visual tasks, reaching high performance, and thereby potentially supporting and even outperforming human experts. This is in particular relevant for colorectal cancer (CRC), which is the 3rd most common cancer type in general, as along the CRC patient journey many complex visual tasks need to be performed: from endoscopy over imaging to histopathology, the screening, diagnosis and treatment of CRC involve visual image analysis tasks. SUMMARY: In all these clinical areas, AI models have shown promising results by supporting physicians, improving accuracy, and providing new biological insights and biomarkers. By predicting prognostic and predictive biomarkers from routine images/slides, AI models could lead to an improved patient stratification for precision oncology approaches in the near future. Moreover, it is conceivable that AI models, in particular together with innovative techniques such as single-cell or spatial profiling, could help to identify novel clinically as well as biologically meaningful biomarkers that could pave the way to new therapeutic approaches. KEY MESSAGES: Here, we give a comprehensive overview of AI in colorectal cancer, describing and discussing these developments as well as the next steps which need to be taken to incorporate AI methods more broadly into the clinical care of CRC.

6.
Radiology ; 307(5): e222223, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37278629

RESUMEN

Background Deep learning (DL) models can potentially improve prognostication of rectal cancer but have not been systematically assessed. Purpose To develop and validate an MRI DL model for predicting survival in patients with rectal cancer based on segmented tumor volumes from pretreatment T2-weighted MRI scans. Materials and Methods DL models were trained and validated on retrospectively collected MRI scans of patients with rectal cancer diagnosed between August 2003 and April 2021 at two centers. Patients were excluded from the study if there were concurrent malignant neoplasms, prior anticancer treatment, incomplete course of neoadjuvant therapy, or no radical surgery performed. The Harrell C-index was used to determine the best model, which was applied to internal and external test sets. Patients were stratified into high- and low-risk groups based on a fixed cutoff calculated in the training set. A multimodal model was also assessed, which used DL model-computed risk score and pretreatment carcinoembryonic antigen level as input. Results The training set included 507 patients (median age, 56 years [IQR, 46-64 years]; 355 men). In the validation set (n = 218; median age, 55 years [IQR, 47-63 years]; 144 men), the best algorithm reached a C-index of 0.82 for overall survival. The best model reached hazard ratios of 3.0 (95% CI: 1.0, 9.0) in the high-risk group in the internal test set (n = 112; median age, 60 years [IQR, 52-70 years]; 76 men) and 2.3 (95% CI: 1.0, 5.4) in the external test set (n = 58; median age, 57 years [IQR, 50-67 years]; 38 men). The multimodal model further improved the performance, with a C-index of 0.86 and 0.67 for the validation and external test set, respectively. Conclusion A DL model based on preoperative MRI was able to predict survival of patients with rectal cancer. The model could be used as a preoperative risk stratification tool. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Langs in this issue.


Asunto(s)
Aprendizaje Profundo , Neoplasias del Recto , Masculino , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Neoplasias del Recto/diagnóstico por imagen , Neoplasias del Recto/terapia , Imagen por Resonancia Magnética , Factores de Riesgo
7.
Radiology ; 307(3): e222211, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36943080

RESUMEN

Background Reducing the amount of contrast agent needed for contrast-enhanced breast MRI is desirable. Purpose To investigate if generative adversarial networks (GANs) can recover contrast-enhanced breast MRI scans from unenhanced images and virtual low-contrast-enhanced images. Materials and Methods In this retrospective study of breast MRI performed from January 2010 to December 2019, simulated low-contrast images were produced by adding virtual noise to the existing contrast-enhanced images. GANs were then trained to recover the contrast-enhanced images from the simulated low-contrast images (approach A) or from the unenhanced T1- and T2-weighted images (approach B). Two experienced radiologists were tasked with distinguishing between real and synthesized contrast-enhanced images using both approaches. Image appearance and conspicuity of enhancing lesions on the real versus synthesized contrast-enhanced images were independently compared and rated on a five-point Likert scale. P values were calculated by using bootstrapping. Results A total of 9751 breast MRI examinations from 5086 patients (mean age, 56 years ± 10 [SD]) were included. Readers who were blinded to the nature of the images could not distinguish real from synthetic contrast-enhanced images (average accuracy of differentiation: approach A, 52 of 100; approach B, 61 of 100). The test set included images with and without enhancing lesions (29 enhancing masses and 21 nonmass enhancement; 50 total). When readers who were not blinded compared the appearance of the real versus synthetic contrast-enhanced images side by side, approach A image ratings were significantly higher than those of approach B (mean rating, 4.6 ± 0.1 vs 3.0 ± 0.2; P < .001), with the noninferiority margin met by synthetic images from approach A (P < .001) but not B (P > .99). Conclusion Generative adversarial networks may be useful to enable breast MRI with reduced contrast agent dose. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Bahl in this issue.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Humanos , Persona de Mediana Edad , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Mama , Aprendizaje Automático
8.
Radiology ; 309(1): e230806, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37787671

RESUMEN

Background Clinicians consider both imaging and nonimaging data when diagnosing diseases; however, current machine learning approaches primarily consider data from a single modality. Purpose To develop a neural network architecture capable of integrating multimodal patient data and compare its performance to models incorporating a single modality for diagnosing up to 25 pathologic conditions. Materials and Methods In this retrospective study, imaging and nonimaging patient data were extracted from the Medical Information Mart for Intensive Care (MIMIC) database and an internal database comprised of chest radiographs and clinical parameters inpatients in the intensive care unit (ICU) (January 2008 to December 2020). The MIMIC and internal data sets were each split into training (n = 33 893, n = 28 809), validation (n = 740, n = 7203), and test (n = 1909, n = 9004) sets. A novel transformer-based neural network architecture was trained to diagnose up to 25 conditions using nonimaging data alone, imaging data alone, or multimodal data. Diagnostic performance was assessed using area under the receiver operating characteristic curve (AUC) analysis. Results The MIMIC and internal data sets included 36 542 patients (mean age, 63 years ± 17 [SD]; 20 567 male patients) and 45 016 patients (mean age, 66 years ± 16; 27 577 male patients), respectively. The multimodal model showed improved diagnostic performance for all pathologic conditions. For the MIMIC data set, the mean AUC was 0.77 (95% CI: 0.77, 0.78) when both chest radiographs and clinical parameters were used, compared with 0.70 (95% CI: 0.69, 0.71; P < .001) for only chest radiographs and 0.72 (95% CI: 0.72, 0.73; P < .001) for only clinical parameters. These findings were confirmed on the internal data set. Conclusion A model trained on imaging and nonimaging data outperformed models trained on only one type of data for diagnosing multiple diseases in patients in an ICU setting. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Kitamura and Topol in this issue.


Asunto(s)
Aprendizaje Profundo , Humanos , Masculino , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Radiografía , Bases de Datos Factuales , Pacientes Internos
9.
BMC Cancer ; 23(1): 113, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36726072

RESUMEN

AIMS: Immune checkpoint inhibitor (ICI) therapy has become a viable treatment strategy in bladder cancer. However, treatment responses vary, and improved biomarkers are needed. Crucially, the characteristics of immune cells remain understudied especially in squamous differentiated bladder cancer (sq-BLCA). Here, we quantitatively analysed the tumour-immune phenotypes of sq-BLCA and correlated them with PD-L1 expression and FGFR3 mutation status. METHODS: Tissue microarrays (TMA) of n = 68 non-schistosomiasis associated pure squamous cell carcinoma (SCC) and n = 46 mixed urothelial carcinoma with squamous differentiation (MIX) were subjected to immunohistochemistry for CD3, CD4, CD8, CD56, CD68, CD79A, CD163, Ki67, perforin and chloroacetate esterase staining. Quantitative image evaluation was performed via digital image analysis. RESULTS: Immune infiltration was generally higher in stroma than in tumour regions. B-cells (CD79A) were almost exclusively found in stromal areas (sTILs), T-lymphocytes and macrophages were also present in tumour cell areas (iTILs), while natural killer cells (CD56) were nearly missing in any area. Tumour-immune phenotype distribution differed depending on the immune cell subset, however, hot tumour-immune phenotypes (high density of immune cells in tumour areas) were frequently found for CD8 + T-cells (33%), especially perforin + lymphocytes (52.2%), and CD68 + macrophages (37.6%). Perforin + CD8 lymphocytes predicted improved overall survival in sq-BLCA while high PD-L1 expression (CPS ≥ 10) was significantly associated with higher CD3 + , CD8 + and CD163 + immune cell density and high Ki67 (density) of tumour cells. Furthermore, PD-L1 expression was positively associated with CD3 + /CD4 + , CD3 + /CD8 + and CD68 + /CD163 + hot tumour-immune phenotypes. FGFR3 mutation status was inversely associated with CD8 + , perforin + and CD79A + lymphocyte density. CONCLUSIONS: Computer-based image analysis is an efficient tool to analyse immune topographies in squamous bladder cancer. Hot tumour-immune phenotypes with strong PD-L1 expression might pose a promising subgroup for clinically successful ICI therapy in squamous bladder cancer and warrant further investigation.


Asunto(s)
Carcinoma de Células Escamosas , Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/patología , Carcinoma de Células Transicionales/patología , Antígeno B7-H1 , Antígeno Ki-67 , Perforina , Carcinoma de Células Escamosas/metabolismo , Linfocitos T CD8-positivos , Fenotipo , Linfocitos Infiltrantes de Tumor , Biomarcadores de Tumor/metabolismo , Microambiente Tumoral
10.
PLoS Comput Biol ; 18(2): e1009822, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35120124

RESUMEN

Classical mathematical models of tumor growth have shaped our understanding of cancer and have broad practical implications for treatment scheduling and dosage. However, even the simplest textbook models have been barely validated in real world-data of human patients. In this study, we fitted a range of differential equation models to tumor volume measurements of patients undergoing chemotherapy or cancer immunotherapy for solid tumors. We used a large dataset of 1472 patients with three or more measurements per target lesion, of which 652 patients had six or more data points. We show that the early treatment response shows only moderate correlation with the final treatment response, demonstrating the need for nuanced models. We then perform a head-to-head comparison of six classical models which are widely used in the field: the Exponential, Logistic, Classic Bertalanffy, General Bertalanffy, Classic Gompertz and General Gompertz model. Several models provide a good fit to tumor volume measurements, with the Gompertz model providing the best balance between goodness of fit and number of parameters. Similarly, when fitting to early treatment data, the general Bertalanffy and Gompertz models yield the lowest mean absolute error to forecasted data, indicating that these models could potentially be effective at predicting treatment outcome. In summary, we provide a quantitative benchmark for classical textbook models and state-of-the art models of human tumor growth. We publicly release an anonymized version of our original data, providing the first benchmark set of human tumor growth data for evaluation of mathematical models.


Asunto(s)
Modelos Biológicos , Neoplasias , Humanos , Inmunoterapia , Modelos Teóricos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Carga Tumoral
11.
Gastric Cancer ; 26(5): 708-720, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37269416

RESUMEN

INTRODUCTION: The Laurén classification is widely used for Gastric Cancer (GC) histology subtyping. However, this classification is prone to interobserver variability and its prognostic value remains controversial. Deep Learning (DL)-based assessment of hematoxylin and eosin (H&E) stained slides is a potentially useful tool to provide an additional layer of clinically relevant information, but has not been systematically assessed in GC. OBJECTIVE: We aimed to train, test and externally validate a deep learning-based classifier for GC histology subtyping using routine H&E stained tissue sections from gastric adenocarcinomas and to assess its potential prognostic utility. METHODS: We trained a binary classifier on intestinal and diffuse type GC whole slide images for a subset of the TCGA cohort (N = 166) using attention-based multiple instance learning. The ground truth of 166 GC was obtained by two expert pathologists. We deployed the model on two external GC patient cohorts, one from Europe (N = 322) and one from Japan (N = 243). We assessed classification performance using the Area Under the Receiver Operating Characteristic Curve (AUROC) and prognostic value (overall, cancer specific and disease free survival) of the DL-based classifier with uni- and multivariate Cox proportional hazard models and Kaplan-Meier curves with log-rank test statistics. RESULTS: Internal validation using the TCGA GC cohort using five-fold cross-validation achieved a mean AUROC of 0.93 ± 0.07. External validation showed that the DL-based classifier can better stratify GC patients' 5-year survival compared to pathologist-based Laurén classification for all survival endpoints, despite frequently divergent model-pathologist classifications. Univariate overall survival Hazard Ratios (HRs) of pathologist-based Laurén classification (diffuse type versus intestinal type) were 1.14 (95% Confidence Interval (CI) 0.66-1.44, p-value = 0.51) and 1.23 (95% CI 0.96-1.43, p-value = 0.09) in the Japanese and European cohorts, respectively. DL-based histology classification resulted in HR of 1.46 (95% CI 1.18-1.65, p-value < 0.005) and 1.41 (95% CI 1.20-1.57, p-value < 0.005), in the Japanese and European cohorts, respectively. In diffuse type GC (as defined by the pathologist), classifying patients using the DL diffuse and intestinal classifications provided a superior survival stratification, and demonstrated statistically significant survival stratification when combined with pathologist classification for both the Asian (overall survival log-rank test p-value < 0.005, HR 1.43 (95% CI 1.05-1.66, p-value = 0.03) and European cohorts (overall survival log-rank test p-value < 0.005, HR 1.56 (95% CI 1.16-1.76, p-value < 0.005)). CONCLUSION: Our study shows that gastric adenocarcinoma subtyping using pathologist's Laurén classification as ground truth can be performed using current state of the art DL techniques. Patient survival stratification seems to be better by DL-based histology typing compared with expert pathologist histology typing. DL-based GC histology typing has potential as an aid in subtyping. Further investigations are warranted to fully understand the underlying biological mechanisms for the improved survival stratification despite apparent imperfect classification by the DL algorithm.


Asunto(s)
Adenocarcinoma , Aprendizaje Profundo , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Estudios Retrospectivos , Pronóstico , Modelos de Riesgos Proporcionales , Adenocarcinoma/patología
12.
Gastric Cancer ; 26(2): 264-274, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36264524

RESUMEN

BACKGROUND: Computational pathology uses deep learning (DL) to extract biomarkers from routine pathology slides. Large multicentric datasets improve performance, but such datasets are scarce for gastric cancer. This limitation could be overcome by Swarm Learning (SL). METHODS: Here, we report the results of a multicentric retrospective study of SL for prediction of molecular biomarkers in gastric cancer. We collected tissue samples with known microsatellite instability (MSI) and Epstein-Barr Virus (EBV) status from four patient cohorts from Switzerland, Germany, the UK and the USA, storing each dataset on a physically separate computer. RESULTS: On an external validation cohort, the SL-based classifier reached an area under the receiver operating curve (AUROC) of 0.8092 (± 0.0132) for MSI prediction and 0.8372 (± 0.0179) for EBV prediction. The centralized model, which was trained on all datasets on a single computer, reached a similar performance. CONCLUSIONS: Our findings demonstrate the feasibility of SL-based molecular biomarkers in gastric cancer. In the future, SL could be used for collaborative training and, thus, improve the performance of these biomarkers. This may ultimately result in clinical-grade performance and generalizability.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Gástricas , Humanos , Herpesvirus Humano 4/genética , Estudios Retrospectivos , Neoplasias Gástricas/patología , Inestabilidad de Microsatélites , Biomarcadores de Tumor/genética
13.
J Pathol ; 257(4): 430-444, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35342954

RESUMEN

Precision oncology relies on the identification of targetable molecular alterations in tumor tissues. In many tumor types, a limited set of molecular tests is currently part of standard diagnostic workflows. However, universal testing for all targetable alterations, especially rare ones, is limited by the cost and availability of molecular assays. From 2017 to 2021, multiple studies have shown that artificial intelligence (AI) methods can predict the probability of specific genetic alterations directly from conventional hematoxylin and eosin (H&E) tissue slides. Although these methods are currently less accurate than gold standard testing (e.g. immunohistochemistry, polymerase chain reaction or next-generation sequencing), they could be used as pre-screening tools to reduce the workload of genetic analyses. In this systematic literature review, we summarize the state of the art in predicting molecular alterations from H&E using AI. We found that AI methods perform reasonably well across multiple tumor types, although few algorithms have been broadly validated. In addition, we found that genetic alterations in FGFR, IDH, PIK3CA, BRAF, TP53, and DNA repair pathways are predictable from H&E in multiple tumor types, while many other genetic alterations have rarely been investigated or were only poorly predictable. Finally, we discuss the next steps for the implementation of AI-based surrogate tests in diagnostic workflows. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Inteligencia Artificial , Neoplasias , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patología , Medicina de Precisión
14.
J Pathol ; 256(1): 50-60, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34561876

RESUMEN

Deep learning is a powerful tool in computational pathology: it can be used for tumor detection and for predicting genetic alterations based on histopathology images alone. Conventionally, tumor detection and prediction of genetic alterations are two separate workflows. Newer methods have combined them, but require complex, manually engineered computational pipelines, restricting reproducibility and robustness. To address these issues, we present a new method for simultaneous tumor detection and prediction of genetic alterations: The Slide-Level Assessment Model (SLAM) uses a single off-the-shelf neural network to predict molecular alterations directly from routine pathology slides without any manual annotations, improving upon previous methods by automatically excluding normal and non-informative tissue regions. SLAM requires only standard programming libraries and is conceptually simpler than previous approaches. We have extensively validated SLAM for clinically relevant tasks using two large multicentric cohorts of colorectal cancer patients, Darmkrebs: Chancen der Verhütung durch Screening (DACHS) from Germany and Yorkshire Cancer Research Bowel Cancer Improvement Programme (YCR-BCIP) from the UK. We show that SLAM yields reliable slide-level classification of tumor presence with an area under the receiver operating curve (AUROC) of 0.980 (confidence interval 0.975, 0.984; n = 2,297 tumor and n = 1,281 normal slides). In addition, SLAM can detect microsatellite instability (MSI)/mismatch repair deficiency (dMMR) or microsatellite stability/mismatch repair proficiency with an AUROC of 0.909 (0.888, 0.929; n = 2,039 patients) and BRAF mutational status with an AUROC of 0.821 (0.786, 0.852; n = 2,075 patients). The improvement with respect to previous methods was validated in a large external testing cohort in which MSI/dMMR status was detected with an AUROC of 0.900 (0.864, 0.931; n = 805 patients). In addition, SLAM provides human-interpretable visualization maps, enabling the analysis of multiplexed network predictions by human experts. In summary, SLAM is a new simple and powerful method for computational pathology that could be applied to multiple disease contexts. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Inestabilidad de Microsatélites , Mutación/genética , Síndromes Neoplásicos Hereditarios/genética , Síndromes Neoplásicos Hereditarios/patología , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/diagnóstico , Estudios de Cohortes , Neoplasias Colorrectales/diagnóstico , Aprendizaje Profundo , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Síndromes Neoplásicos Hereditarios/diagnóstico , Reproducibilidad de los Resultados
15.
J Pathol ; 256(3): 269-281, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34738636

RESUMEN

The spread of early-stage (T1 and T2) adenocarcinomas to locoregional lymph nodes is a key event in disease progression of colorectal cancer (CRC). The cellular mechanisms behind this event are not completely understood and existing predictive biomarkers are imperfect. Here, we used an end-to-end deep learning algorithm to identify risk factors for lymph node metastasis (LNM) status in digitized histopathology slides of the primary CRC and its surrounding tissue. In two large population-based cohorts, we show that this system can predict the presence of more than one LNM in pT2 CRC patients with an area under the receiver operating curve (AUROC) of 0.733 (0.67-0.758) and patients with any LNM with an AUROC of 0.711 (0.597-0.797). Similarly, in pT1 CRC patients, the presence of more than one LNM or any LNM was predictable with an AUROC of 0.733 (0.644-0.778) and 0.567 (0.542-0.597), respectively. Based on these findings, we used the deep learning system to guide human pathology experts towards highly predictive regions for LNM in the whole slide images. This hybrid human observer and deep learning approach identified inflamed adipose tissue as the highest predictive feature for LNM presence. Our study is a first proof of concept that artificial intelligence (AI) systems may be able to discover potentially new biological mechanisms in cancer progression. Our deep learning algorithm is publicly available and can be used for biomarker discovery in any disease setting. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Tejido Adiposo/patología , Neoplasias Colorrectales/patología , Aprendizaje Profundo , Diagnóstico por Computador , Detección Precoz del Cáncer , Interpretación de Imagen Asistida por Computador , Ganglios Linfáticos/patología , Microscopía , Biopsia , Humanos , Metástasis Linfática , Estadificación de Neoplasias , Valor Predictivo de las Pruebas , Prueba de Estudio Conceptual , Reproducibilidad de los Resultados , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo
16.
J Hepatol ; 77(1): 116-127, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35143898

RESUMEN

BACKGROUND & AIMS: Patients with hepatocellular carcinoma (HCC) displaying overexpression of immune gene signatures are likely to be more sensitive to immunotherapy, however, the use of such signatures in clinical settings remains challenging. We thus aimed, using artificial intelligence (AI) on whole-slide digital histological images, to develop models able to predict the activation of 6 immune gene signatures. METHODS: AI models were trained and validated in 2 different series of patients with HCC treated by surgical resection. Gene expression was investigated using RNA sequencing or NanoString technology. Three deep learning approaches were investigated: patch-based, classic MIL and CLAM. Pathological reviewing of the most predictive tissue areas was performed for all gene signatures. RESULTS: The CLAM model showed the best overall performance in the discovery series. Its best-fold areas under the receiver operating characteristic curves (AUCs) for the prediction of tumors with upregulation of the immune gene signatures ranged from 0.78 to 0.91. The different models generalized well in the validation dataset with AUCs ranging from 0.81 to 0.92. Pathological analysis of highly predictive tissue areas showed enrichment in lymphocytes, plasma cells, and neutrophils. CONCLUSION: We have developed and validated AI-based pathology models able to predict the activation of several immune and inflammatory gene signatures. Our approach also provides insights into the morphological features that impact the model predictions. This proof-of-concept study shows that AI-based pathology could represent a novel type of biomarker that will ease the translation of our biological knowledge of HCC into clinical practice. LAY SUMMARY: Immune and inflammatory gene signatures may be associated with increased sensitivity to immunotherapy in patients with advanced hepatocellular carcinoma. In the present study, the use of artificial intelligence-based pathology enabled us to predict the activation of these signatures directly from histology.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Inteligencia Artificial , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Curva ROC
17.
J Hepatol ; 77(6): 1586-1597, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35987274

RESUMEN

BACKGROUND & AIMS: Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a rare primary liver cancer (PLC) associated with a poor prognosis. Given the challenges in its identification and its clinical implications, biomarkers are critically needed. We aimed to investigate the diagnostic and prognostic value of the immunohistochemical expression of Nestin, a progenitor cell marker, in a large multicentric series of PLCs. METHODS: We collected 461 cHCC-CCA samples from 32 different clinical centers. Control cases included 368 hepatocellular carcinomas (HCCs) and 221 intrahepatic cholangiocarcinomas (iCCAs). Nestin immunohistochemistry was performed on whole tumor sections. Diagnostic and prognostic performances of Nestin expression were determined using receiver-operating characteristic curves and Cox regression modeling. RESULTS: Nestin was able to distinguish cHCC-CCA from HCC with AUCs of 0.85 and 0.86 on surgical and biopsy samples, respectively. Performance was lower for the distinction of cHCC-CCA from iCCA (AUCs of 0.59 and 0.60). Nestin, however, showed a high prognostic value, allowing identification of the subset of cHCC-CCA ("Nestin High", >30% neoplastic cells with positive staining) associated with the worst clinical outcome (shorter disease-free and overall survival) after surgical resection and liver transplantation, as well as when assessment was performed on biopsies. CONCLUSION: We show in different clinical settings that Nestin has diagnostic value and that it is a useful biomarker to identify the subset of cHCC-CCA associated with the worst clinical outcome. Nestin immunohistochemistry may be used to refine risk stratification and improve treatment allocation for patients with this highly aggressive malignancy. LAY SUMMARY: There are different types of primary liver cancers (i.e. cancers that originate in the liver). Accurately identifying a specific subtype of primary liver cancer (and determining its associated prognosis) is important as it can have a major impact on treatment allocation. Herein, we show that a protein called Nestin could be used to refine risk stratification and improve treatment allocation for patients with combined hepatocellular carcinoma, a rare but highly aggressive subtype of primary liver cancer.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Nestina , Carcinoma Hepatocelular/diagnóstico , Pronóstico , Neoplasias Hepáticas/diagnóstico , Colangiocarcinoma/diagnóstico , Neoplasias de los Conductos Biliares/diagnóstico , Conductos Biliares Intrahepáticos
18.
Histopathology ; 80(7): 1121-1127, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35373378

RESUMEN

AIMS: Artificial intelligence (AI) provides a powerful tool to extract information from digitised histopathology whole slide images. During the last 5 years, academic and commercial actors have developed new technical solutions for a diverse set of tasks, including tissue segmentation, cell detection, mutation prediction, prognostication and prediction of treatment response. In the light of limited overall resources, it is presently unclear for researchers, practitioners and policymakers which of these topics are stable enough for clinical use in the near future and which topics are still experimental, but worth investing time and effort into. METHODS AND RESULTS: To identify potentially promising applications of AI in pathology, we performed an anonymous online survey of 75 computational pathology domain experts from academia and industry. Participants enrolled in 2021 were queried about their subjective opinion on promising and appealing subfields of computational pathology with a focus upon solid tumours. The results of this survey indicate that the prediction of treatment response directly from routine pathology slides is regarded as the most promising future application. This item was ranked highest in the overall analysis and in subgroups by age and professional background. Furthermore, prediction of genetic alterations, gene expression and survival directly from routine pathology images scored consistently high throughout subgroups. CONCLUSIONS: Together, these data demonstrate a possible direction for the development of computational pathology systems in clinical, academic and industrial research in the near future.


Asunto(s)
Inteligencia Artificial , Neoplasias , Humanos , Mutación , Neoplasias/diagnóstico
19.
Endoscopy ; 54(10): 1009-1014, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35158384

RESUMEN

BACKGROUND: Multiple computer-aided systems for polyp detection (CADe) have been introduced into clinical practice, with an unclear effect on examiner behavior. This study aimed to measure the influence of a CADe system on reaction time, mucosa misinterpretation, and changes in visual gaze pattern. METHODS: Participants with variable levels of colonoscopy experience viewed video sequences (n = 29) while eye movement was tracked. Using a crossover design, videos were presented in two assessments, with and without CADe support. Reaction time for polyp detection and eye-tracking metrics were evaluated. RESULTS: 21 participants performed 1218 experiments. CADe was significantly faster in detecting polyps compared with participants (median 1.16 seconds [99 %CI 0.40-3.43] vs. 2.97 seconds [99 %CI 2.53-3.77], respectively). However, the reaction time of participants when using CADe (median 2.90 seconds [99 %CI 2.55-3.38]) was similar to that without CADe. CADe increased misinterpretation of normal mucosa and reduced the eye travel distance. CONCLUSIONS: Results confirm that CADe systems detect polyps faster than humans. However, use of CADe did not improve human reaction times. It increased misinterpretation of normal mucosa and decreased the eye travel distance. Possible consequences of these findings might be prolonged examination time and deskilling.


Asunto(s)
Pólipos del Colon , Fijación Ocular , Pólipos del Colon/diagnóstico , Colonoscopía/métodos , Computadores , Humanos , Tiempo de Reacción
20.
J Pathol ; 254(1): 70-79, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33565124

RESUMEN

Deep learning can detect microsatellite instability (MSI) from routine histology images in colorectal cancer (CRC). However, ethical and legal barriers impede sharing of images and genetic data, hampering development of new algorithms for detection of MSI and other biomarkers. We hypothesized that histology images synthesized by conditional generative adversarial networks (CGANs) retain information about genetic alterations. To test this, we developed a 'histology CGAN' which was trained on 256 patients (training cohort 1) and 1457 patients (training cohort 2). The CGAN synthesized 10 000 synthetic MSI and non-MSI images which contained a range of tissue types and were deemed realistic by trained observers in a blinded study. Subsequently, we trained a deep learning detector of MSI on real or synthetic images and evaluated the performance of MSI detection in a held-out set of 142 patients. When trained on real images from training cohort 1, this system achieved an area under the receiver operating curve (AUROC) of 0.742 [0.681, 0.854]. Training on the larger cohort 2 only marginally improved the AUROC to 0.757 [0.707, 0.869]. Training on purely synthetic data resulted in an AUROC of 0.743 [0.658, 0.801]. Training on both real and synthetic data further increased AUROC to 0.777 [0.715, 0.821]. We conclude that synthetic histology images retain information reflecting underlying genetic alterations in colorectal cancer. Using synthetic instead of real images to train deep learning systems yields non-inferior classifiers. This approach can be used to create large shareable data sets or to augment small data sets with rare molecular features. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias Colorrectales/genética , Aprendizaje Profundo , Interpretación de Imagen Asistida por Computador/métodos , Inestabilidad de Microsatélites , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda