Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Chemphyschem ; 14(18): 4126-33, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24255011

RESUMEN

The adsorption of ionic mercury(II) from aqueous solution on functionalized hydride silicon materials was investigated. The adsorbents were prepared by modification of mesoporous silica C-120 with triethoxysilane or by converting alkoxysilane into siloxanes by reaction with acetic acid. Mercury adsorption isotherms at 208C are reported, and maximum mercury loadings were determined by Langmuir fitting. Adsorbents exhibited efficient and rapid removal of ionic mercury from aqueous solution, with a maximum mercury loading of approximately 0.22 and 0.43 mmol of Hg g1 of silica C-120 and polyhedraloligomeric silsesquioxane (POSS) xerogel, respectively. Adsorption efficiency remained almost constant from pH 2.7 to 7. These inexpensive adsorbents exhibiting rapid assembly, low pH sensitivity, and high reactivity and capacity, are potential candidates as effective materials for mercury decontamination in natural waters and industrial effluents.

2.
Angew Chem Int Ed Engl ; 51(11): 2632-5, 2012 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-22307977

RESUMEN

Breaking through the stoichiometry barrier: as the diameter of silver particles is decreased below a critical size of 32 nm, the molar ratio of aqueous Hg(II) to Ag(0) drastically increases beyond the conventional Hg/Ag ratio of 0.5:1, leading to hyperstoichiometry with a maximum ratio of 1.125:1. Therein, around 99% of the initial silver is retained to rapidly form a solid amalgam with reduced mercury.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda