RESUMEN
As a conformationally restricted amino acid, hydroxy-l-proline is a versatile scaffold for the synthesis of diverse multi-functionalized pyrrolidines for probing the ligand binding sites of biological targets. With the goal to develop new inhibitors of the widely expressed amino acid transporters SLC1A4 and SLC1A5 (also known as ASCT1 and ASCT2), we synthesized and functionally screened synthetic hydroxy-l-proline derivatives using electrophysiological and radiolabeled uptake methods against amino acid transporters from the SLC1, SLC7, and SLC38 solute carrier families. We have discovered a novel class of alkoxy hydroxy-pyrrolidine carboxylic acids (AHPCs) that act as selective high-affinity inhibitors of the SLC1 family neutral amino acid transporters SLC1A4 and SLC1A5. AHPCs were computationally docked into a homology model and assessed with respect to predicted molecular orientation and functional activity. The series of hydroxyproline analogs identified here represent promising new agents to pharmacologically modulate SLC1A4 and SLC1A5 amino acid exchangers which are implicated in numerous pathophysiological processes such as cancer and neurological diseases.
Asunto(s)
Sistema de Transporte de Aminoácidos ASC , Descubrimiento de Drogas , Antígenos de Histocompatibilidad Menor , Animales , Humanos , Sistema de Transporte de Aminoácidos ASC/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos ASC/química , Células HEK293 , Antígenos de Histocompatibilidad Menor/metabolismo , Antígenos de Histocompatibilidad Menor/química , Simulación del Acoplamiento Molecular , Prolina/química , Prolina/análogos & derivados , Pirrolidinas/química , Pirrolidinas/farmacología , Pirrolidinas/síntesis química , Relación Estructura-ActividadRESUMEN
Solute carrier family 1 member 4 (SLC1A4), also referred to as Alanine/Serine/Cysteine/Threonine-preferring Transporter 1 (ASCT1), is a sodium-dependent neutral amino acid transporter. It is expressed in many tissues, including the brain, where it is expressed primarily on astrocytes and plays key roles in neuronal differentiation and development, maintaining neurotransmitter homeostasis, and N-methyl-D-aspartate neurotransmission, through regulation of L- and D-serine. Mutations in SLC1A4 are associated with the rare autosomal recessive neurodevelopmental disorder spastic tetraplegia, thin corpus callosum, and progressive microcephaly (SPATCCM, OMIM 616657). Psychomotor development and speech are significantly impaired in these patients, and many develop seizures. We generated and characterized a knock-in mouse model for the most common mutant allele, which results in a single amino acid change (p.Glu256Lys, or E256K). Homozygous mutants had increased D-serine uptake in the brain, microcephaly, and thin corpus callosum and cortex layer 1. While p.E256K homozygotes showed some significant differences in exploratory behavior relative to wildtype mice, their performance in assays for motor coordination, endurance, learning, and memory was normal, and they showed no significant differences in long-term potentiation. Taken together, these results indicate that the impact of the p.E256K mutation on cognition and motor function is minimal in mice, but other aspects of SLC1A4 function in the brain are conserved. Mice homozygous for p.E256K may be a good model for understanding the developmental basis of the corpus callosum and microcephaly phenotypes observed in SPATCCM patients and assessing whether they are rescued by serine supplementation.
Asunto(s)
Microcefalia , Humanos , Ratones , Animales , Microcefalia/genética , Microcefalia/complicaciones , Cuerpo Calloso/metabolismo , Encéfalo/metabolismo , Cuadriplejía/complicaciones , SerinaRESUMEN
Lowering of prion protein (PrP) expression in the brain is a genetically validated therapeutic hypothesis in prion disease. We recently showed that antisense oligonucleotide (ASO)-mediated PrP suppression extends survival and delays disease onset in intracerebrally prion-infected mice in both prophylactic and delayed dosing paradigms. Here, we examine the efficacy of this therapeutic approach across diverse paradigms, varying the dose and dosing regimen, prion strain, treatment timepoint, and examining symptomatic, survival, and biomarker readouts. We recapitulate our previous findings with additional PrP-targeting ASOs, and demonstrate therapeutic benefit against four additional prion strains. We demonstrate that <25% PrP suppression is sufficient to extend survival and delay symptoms in a prophylactic paradigm. Rise in both neuroinflammation and neuronal injury markers can be reversed by a single dose of PrP-lowering ASO administered after the detection of pathological change. Chronic ASO-mediated suppression of PrP beginning at any time up to early signs of neuropathology confers benefit similar to constitutive heterozygous PrP knockout. Remarkably, even after emergence of frank symptoms including weight loss, a single treatment prolongs survival by months in a subset of animals. These results support ASO-mediated PrP lowering, and PrP-lowering therapeutics in general, as a promising path forward against prion disease.
Asunto(s)
Oligonucleótidos Antisentido/uso terapéutico , Enfermedades por Prión/terapia , Proteínas Priónicas/genética , Tratamiento con ARN de Interferencia/métodos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular , Ratones , Ratones Endogámicos C57BL , Oligonucleótidos Antisentido/química , Proteínas Priónicas/metabolismoRESUMEN
Beta-amyloid (Aß) is thought to play a critical role in Alzheimer's disease (AD), and application of soluble oligomeric forms of Aß produces AD-like impairments in cognition and synaptic plasticity in experimental systems. We found previously that transgenic overexpression of the PP2A methylesterase, PME-1, or the PP2A methyltransferase, LCMT-1, altered the sensitivity of mice to Aß-induced impairments, suggesting that PME-1 inhibition may be an effective approach for preventing or treating these impairments. To explore this possibility, we examined the behavioral and electrophysiological effects of acutely applied synthetic Aß oligomers in male and female mice heterozygous for either a PME-1 KO or an LCMT-1 gene-trap mutation. We found that heterozygous PME-1 KO mice were resistant to Aß-induced impairments in cognition and synaptic plasticity, whereas LCMT-1 gene-trap mice showed increased sensitivity to Aß-induced impairments. The heterozygous PME-1 KO mice produced normal levels of endogenous Aß and exhibited normal electrophysiological responses to picomolar concentrations of Aß, suggesting that reduced PME-1 expression in these animals protects against Aß-induced impairments without impacting normal physiological Aß functions. Together, these data provide additional support for roles for PME-1 and LCMT-1 in regulating sensitivity to Aß-induced impairments, and suggest that inhibition of PME-1 may constitute a viable therapeutic approach for selectively protecting against the pathologic actions of Aß in AD.SIGNIFICANCE STATEMENT Elevated levels of ß-amyloid (Aß) in the brain are thought to contribute to the cognitive impairments observed in Alzheimer's disease patients. Here we show that genetically reducing endogenous levels of the PP2A methylesterase, PME-1, prevents the cognitive and electrophysiological impairments caused by acute exposure to pathologic concentrations of Aß without impairing normal physiological Aß function or endogenous Aß production. Conversely, reducing endogenous levels of the PP2A methyltransferase, LCMT-1, increases sensitivity to Aß-induced impairments. These data offer additional insights into the molecular factors that control sensitivity to Aß-induced impairments, and suggest that inhibiting PME-1 may constitute a viable therapeutic avenue for preventing Aß-related impairments in Alzheimer's disease.
Asunto(s)
Péptidos beta-Amiloides/toxicidad , Hidrolasas de Éster Carboxílico/biosíntesis , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/enzimología , Proteína O-Metiltransferasa/biosíntesis , Animales , Hidrolasas de Éster Carboxílico/genética , Disfunción Cognitiva/fisiopatología , Fenómenos Electrofisiológicos/efectos de los fármacos , Fenómenos Electrofisiológicos/fisiología , Femenino , Expresión Génica , Masculino , Ratones , Ratones Noqueados , Proteína O-Metiltransferasa/genéticaRESUMEN
Chemosensory pheromonal information regulates aggression and reproduction in many species, but how pheromonal signals are transduced to reliably produce behavior is not well understood. Here we demonstrate that the pheromonal signals detected by Gr32a-expressing chemosensory neurons to enhance male aggression are filtered through octopamine (OA, invertebrate equivalent of norepinephrine) neurons. Using behavioral assays, we find males lacking both octopamine and Gr32a gustatory receptors exhibit parallel delays in the onset of aggression and reductions in aggression. Physiological and anatomical experiments identify Gr32a to octopamine neuron synaptic and functional connections in the suboesophageal ganglion. Refining the Gr32a-expressing population indicates that mouth Gr32a neurons promote male aggression and form synaptic contacts with OA neurons. By restricting the monoamine neuron target population, we show that three previously identified OA-Fru(M) neurons involved in behavioral choice are among the Gr32a-OA connections. Our findings demonstrate that octopaminergic neuromodulatory neurons function as early as a second-order step in this chemosensory-driven male social behavior pathway.
Asunto(s)
Agresión , Conducta Animal/fisiología , Proteínas de Drosophila/fisiología , Drosophila/fisiología , Neuronas/fisiología , Octopamina/fisiología , Receptores de Superficie Celular/fisiología , Conducta Sexual Animal , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Cartilla de ADN , Proteínas de Drosophila/genética , Masculino , Reacción en Cadena de la Polimerasa , Receptores de Superficie Celular/genética , Transducción de SeñalRESUMEN
Sex pheromone communication, acting as a prezygotic barrier to mating, is believed to have contributed to the speciation of moths and butterflies in the order Lepidoptera. Five decades after the discovery of the first moth sex pheromone, little is known about the molecular mechanisms that underlie the evolution of pheromone communication between closely related species. Although Asian and European corn borers (ACB and ECB) can be interbred in the laboratory, they are behaviorally isolated from mating naturally by their responses to subtly different sex pheromone isomers, (E)-12- and (Z)-12-tetradecenyl acetate and (E)-11- and (Z)-11-tetradecenyl acetate (ACB: E12, Z12; ECB; E11, Z11). Male moth olfactory systems respond specifically to the pheromone blend produced by their conspecific females. In vitro, ECB(Z) odorant receptor 3 (OR3), a sex pheromone receptor expressed in male antennae, responds strongly to E11 but also generally to the Z11, E12, and Z12 pheromones. In contrast, we show that ACB OR3, a gene that has been subjected to positive selection (ω = 2.9), responds preferentially to the ACB E12 and Z12 pheromones. In Ostrinia species the amino acid residue corresponding to position 148 in transmembrane domain 3 of OR3 is alanine (A), except for ACB OR3 that has a threonine (T) in this position. Mutation of this residue from A to T alters the pheromone recognition pattern by selectively reducing the E11 response â¼14-fold. These results suggest that discrete mutations that narrow the specificity of more broadly responsive sex pheromone receptors may provide a mechanism that contributes to speciation.
Asunto(s)
Evolución Molecular , Mariposas Nocturnas/genética , Receptores de Feromonas/genética , Atractivos Sexuales/fisiología , Adaptación Fisiológica/genética , Secuencia de Aminoácidos , Animales , Femenino , Masculino , Potenciales de la Membrana/fisiología , Datos de Secuencia Molecular , Mariposas Nocturnas/clasificación , Oocitos/fisiología , Filogenia , Polimorfismo de Nucleótido Simple/genética , Receptores Odorantes/genética , Receptores Odorantes/fisiología , Receptores de Feromonas/fisiología , Olfato/genética , Especificidad de la Especie , XenopusRESUMEN
A prominent aqueous cavity is formed by the junction of three identical subunits in the excitatory amino acid transporter (EAAT) family. To investigate the effect of this structure on the interaction of ligands with the transporter, we recorded currents in voltage-clamped Xenopus oocytes expressing EAATs and used concentration jumps to measure binding and unbinding rates of a high-affinity aspartate analog that competitively blocks transport (ß-2-fluorenyl-aspartylamide; 2-FAA). The binding rates of the blocker were approximately one order of magnitude slower than l-Glu and were not significantly different for EAAT1, EAAT2, or EAAT3, but 2-FAA exhibited higher affinity for the neuronal transporter EAAT3 as a result of a slower dissociation rate. Unexpectedly, the rate of recovery from block was increased by l-Glu in a saturable and concentration-dependent manner, ruling out a first-order mechanism and suggesting that following unbinding, there is a significant probability of ligand rebinding to the same or neighboring subunits within a trimer. Consistent with such a mechanism, coexpression of wild-type subunits with mutant (R447C) subunits that do not bind glutamate or 2-FAA also increased the unblocking rate. The data suggest that electrostatic and steric factors result in an effective dissociation rate that is approximately sevenfold slower than the microscopic subunit unbinding rate. The quaternary structure, which has been conserved through evolution, is expected to increase the transporters' capture efficiency by increasing the probability that following unbinding, a ligand will rebind as opposed to being lost to diffusion.
Asunto(s)
Ácido Aspártico/química , Proteínas de Transporte de Glutamato en la Membrana Plasmática/química , Animales , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Sitios de Unión/fisiología , Transporte Biológico/fisiología , Proteínas de Transporte de Glutamato en la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Humanos , Ligandos , Xenopus laevisRESUMEN
SLC1A4 (solute carrier family 1 member 4, also referred to as ASCT1, Alanine/Serine/Cysteine/Threonine-preferring Transporter 1) is a sodium-dependent neutral amino acid transporter. It is highly expressed in many tissues, including the brain, where it is expressed primarily on astrocytes and plays key roles in neuronal differentiation and development, maintaining neurotransmitter homeostasis, and N-methyl-D-aspartate (NMDA) neurotransmission, through regulation of L- and D-serine. Mutations in SLC1A4 are associated with the rare autosomal recessive neurodevelopmental disorder spastic tetraplegia, thin corpus callosum, and progressive microcephaly (SPATCCM, OMIM 616657). Psychomotor development and speech are significantly impaired in these patients, and many develop seizures. We generated and characterized a knock-in mouse model for the most common mutant allele, which results in a single amino acid change (p.Glu256Lys, or E256K). Homozygous mutants had increased D-serine uptake in the brain, microcephaly, and thin corpus callosum and cortex layer 1. While p.E256K homozygotes showed some significant differences in exploratory behavior relative to wildtype mice, their performance in assays for motor coordination, endurance, learning, and memory was normal, and they showed no significant differences in long-term potentiation. Taken together, these results indicate that some aspects of SLC1A4 function in brain development are conserved between mice and humans, but the impact of the p.E256K mutation on cognition and motor function is minimal in mice.
RESUMEN
BACKGROUND: The serine/threonine protein phosphatase, PP2A, is thought to play a central role in the molecular pathogenesis of Alzheimer's disease (AD), and the activity and substrate specificity of PP2A is regulated, in part, through methylation and demethylation of its catalytic subunit. Previously, we found that transgenic overexpression of the PP2A methyltransferase, LCMT-1, or the PP2A methylesterase, PME-1, altered the sensitivity of mice to impairments caused by acute exposure to synthetic oligomeric amyloid-ß (Aß). OBJECTIVE: Here we sought to test the possibility that these molecules also controlled sensitivity to impairments caused by chronically elevated levels of Aß produced in vivo. METHODS: To do this, we examined the effects of transgenic LCMT-1, or PME-1 overexpression on cognitive and electrophysiological impairments caused by chronic overexpression of mutant human APP in Tg2576 mice. RESULTS: We found that LCMT-1 overexpression prevented impairments in short-term spatial memory and synaptic plasticity in Tg2576 mice, without altering APP expression or soluble Aß levels. While the magnitude of the effects of PME-1 overexpression in Tg2576 mice was small and potentially confounded by the emergence of non-cognitive impairments, Tg2576 mice that overexpressed PME-1 showed a trend toward earlier onset and/or increased severity of cognitive and electrophysiological impairments. CONCLUSION: These data suggest that the PP2A methyltransferase, LCMT-1, and the PP2A methylesterase, PME-1, may participate in the molecular pathogenesis of AD by regulating sensitivity to the pathogenic effects of chronically elevated levels of Aß.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Proteína O-Metiltransferasa/metabolismo , Enfermedad de Alzheimer/complicaciones , Péptidos beta-Amiloides/genética , Animales , Disfunción Cognitiva/etiología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones TransgénicosRESUMEN
Cellular oxidants are primarily managed by the thioredoxin reductase-1 (TrxR1)- and glutathione reductase (Gsr)-driven antioxidant systems. In mice having hepatocyte-specific co-disruption of TrxR1 and Gsr (TrxR1/Gsr-null livers), methionine catabolism sustains hepatic levels of reduced glutathione (GSH). Although most mice with TrxR1/Gsr-null livers exhibit long-term survival, ~25% die from spontaneous liver failure between 4- and 7-weeks of age. Here we tested whether liver failure was ameliorated by ascorbate supplementation. Following ascorbate, dehydroascorbate, or mock treatment, we assessed survival, liver histology, or hepatic redox markers including GSH and GSSG, redox enzyme activities, and oxidative damage markers. Unexpectedly, rather than providing protection, ascorbate (5 mg/mL, drinking water) increased the death-rate to 43%. In adults, ascorbate (4 mg/g × 3 days i.p.) caused hepatocyte necrosis and loss of hepatic GSH in TrxR1/Gsr-null livers but not in wildtype controls. Dehydroascorbate (0.3 mg/g i.p.) also depleted hepatic GSH in TrxR1/Gsr-null livers, whereas GSH levels were not significantly affected by either treatment in wildtype livers. Curiously, however, despite depleting GSH, ascorbate treatment diminished basal DNA damage and oxidative stress markers in TrxR1/Gsr-null livers. This suggests that, although ascorbate supplementation can prevent oxidative damage, it also can deplete GSH and compromise already stressed livers.
RESUMEN
Glutamate transporters have a homotrimeric subunit structure with a large central water-filled cavity that extends partially into the plane of the lipid bilayer (Yernool et al., 2004). In addition to uptake of glutamate, the transporters also mediate a chloride conductance that is increased in the presence of substrate. Whether the chloride channel is located in the central pore of the trimer or within the individual subunits has been controversial. We find that coexpression of wild-type neuronal glutamate transporter EAAT3 subunits with subunits mutated at R447, a residue governing substrate selectivity (Bendahan et al., 2000), results in transport activity consistent with two distinct noninteracting populations of transporters, in agreement with previous work suggesting that each subunit operates independently to transport substrate (Awes et al., 2004; Grewer et al., 2005; Koch and Larsson, 2005). In wild-type homotrimeric transporters, the glutamate concentration dependence of the anion conductance and the kinetics of glutamate flux were isolated and measured, and the anion channel activation was fitted to analytical expressions corresponding to (1) a central pore gated by binding to one or more subunits and (2) a channel pore in each subunit. The data indicate that glutamate-binding sites, transport pathways, and chloride channels reside in individual subunits in a trimer and function independently.
Asunto(s)
Canales de Cloruro/metabolismo , Transportador 3 de Aminoácidos Excitadores/metabolismo , Subunidades de Proteína/metabolismo , Receptores de Glutamato/metabolismo , Animales , Canales de Cloruro/fisiología , Transportador 3 de Aminoácidos Excitadores/agonistas , Femenino , Ácido Glutámico/metabolismo , Ácido Glutámico/fisiología , Humanos , Activación del Canal Iónico/fisiología , Permeabilidad , Estructura Secundaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Receptores de Glutamato/genética , Receptores de Glutamato/fisiología , Transducción de Señal/genética , Xenopus laevisRESUMEN
Excitatory amino acid transporters clear glutamate from the synaptic cleft and play a critical role in glutamatergic neurotransmission. Their differential roles in astrocytes, microglia, and neurons are poorly understood due in part to a lack of pharmacological tools that can be targeted to specific cells and tissues. We now describe a photoswitchable inhibitor, termed ATT, that interacts with the major mammalian forebrain transporters EAAT1-3 in a manner that can be reversibly switched between trans (high-affinity) and cis (low-affinity) configurations using light of different colors. In the dark, ATT competitively inhibited the predominant glial transporter EAAT2 with â¼200-fold selectivity over the neuronal transporter EAAT3. Brief exposure to 350 nm light reduced the steady-state blocker affinity by more than an order of magnitude. Illumination of EAAT2 complexed with ATT induced a corresponding increase in the blocker off-rate monitored in the presence of glutamate. ATT can be used to reversibly manipulate glutamate transporter activity with light and may be useful to gain insights into the dynamic physiological roles of glutamate transporters in the brain, as well as to study the molecular interactions of transporters with ligands.
Asunto(s)
Ácido Aspártico/análogos & derivados , Transportador 1 de Aminoácidos Excitadores/antagonistas & inhibidores , Transportador 3 de Aminoácidos Excitadores/antagonistas & inhibidores , Proteínas de Transporte de Glutamato en la Membrana Plasmática/antagonistas & inhibidores , Moduladores del Transporte de Membrana/farmacología , Animales , Ácido Aspártico/síntesis química , Ácido Aspártico/química , Ácido Aspártico/farmacología , Relación Dosis-Respuesta a Droga , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores , Transportador 3 de Aminoácidos Excitadores/metabolismo , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Humanos , Isomerismo , Luz , Potenciales de la Membrana/efectos de los fármacos , Moduladores del Transporte de Membrana/síntesis química , Moduladores del Transporte de Membrana/química , Estructura Molecular , Oocitos , Técnicas de Placa-Clamp , Procesos Fotoquímicos , Xenopus laevisRESUMEN
N-methyl-D-aspartate (NMDA) receptors play critical roles in synaptic transmission and plasticity. Activation of NMDA receptors by synaptically released L-glutamate also requires occupancy of co-agonist binding sites in the tetrameric receptor by either glycine or D-serine. Although D-serine appears to be the predominant co-agonist at synaptic NMDA receptors, the transport mechanisms involved in D-serine homeostasis in brain are poorly understood. In this work we show that the SLC1 amino acid transporter family members SLC1A4 (ASCT1) and SLC1A5 (ASCT2) mediate homo- and hetero-exchange of D-serine with physiologically relevant kinetic parameters. In addition, the selectivity profile of D-serine uptake in cultured rat hippocampal astrocytes is consistent with uptake mediated by both ASCT1 and ASCT2. Together these data suggest that SLC1A4 (ASCT1) may represent an important route of Na-dependent D-serine flux in the brain that has the ability to regulate extracellular D-serine and thereby NMDA receptor activity.
Asunto(s)
Sistema de Transporte de Aminoácidos ASC/metabolismo , Astrocitos/metabolismo , Hipocampo/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Serina/metabolismo , Animales , Transporte Biológico Activo/fisiología , Técnicas de Cultivo de Célula , Células Cultivadas , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismoRESUMEN
The excitatory amino acid transporters (EAATs) play key roles in the regulation of CNS L-glutamate, especially related to synthesis, signal termination, synaptic spillover, and excitotoxic protection. Inhibitors available to delineate EAAT pharmacology and function are essentially limited to those that non-selectively block all EAATs or those that exhibit a substantial preference for EAAT2. Thus, it is difficult to selectively study the other subtypes, particularly EAAT1 and EAAT3. Structure activity studies on a series of beta-substituted aspartate analogues identify L-beta-benzyl-aspartate (L-beta-BA) as among the first blockers that potently and preferentially inhibits the neuronal EAAT3 subtype. Kinetic analysis of D-[(3)H]aspartate uptake into C17.2 cells expressing the hEAATs demonstrate that L-beta-threo-BA is the more potent diastereomer, acts competitively, and exhibits a 10-fold preference for EAAT3 compared to EAAT1 and EAAT2. Electrophysiological recordings of EAAT-mediated currents in Xenopus oocytes identify L-beta-BA as a non-substrate inhibitor. Analyzing L-beta-threo-BA within the context of a novel EAAT2 pharmacophore model suggests: (1) a highly conserved positioning of the electrostatic carboxyl and amino groups; (2) nearby regions that accommodate select structural modifications (cyclopropyl rings, methyl groups, oxygen atoms); and (3) a unique region L-beta-threo-BA occupied by the benzyl moieties of L-TBOA, L-beta-threo-BA and related analogues. It is plausible that the preference of L-beta-threo-BA and L-TBOA for EAAT3 and EAAT2, respectively, could reside in the latter two pharmacophore regions.
Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/antagonistas & inhibidores , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacología , Transportador 3 de Aminoácidos Excitadores/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Animales , Ácido Aspártico/química , Línea Celular Transformada , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica/métodos , Transportador 1 de Aminoácidos Excitadores/fisiología , Transportador 2 de Aminoácidos Excitadores/fisiología , Transportador 3 de Aminoácidos Excitadores/fisiología , Expresión Génica/efectos de los fármacos , Expresión Génica/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Ratones , Modelos Moleculares , Neuronas/metabolismo , Oocitos , Técnicas de Placa-Clamp/métodos , Transfección/métodos , Tritio/farmacocinética , XenopusAsunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Pyrococcus horikoshii/química , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Cristalografía por Rayos X , Ácido Glutámico/metabolismo , Modelos Moleculares , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Relación Estructura-ActividadRESUMEN
Accurate knowledge of the ambient extracellular glutamate concentration in brain is required for understanding its potential impacts on tonic and phasic receptor signaling. Estimates of ambient glutamate based on microdialysis measurements are generally in the range of â¼2-10µM, approximately 100-fold higher than estimates based on electrophysiological measurements of tonic NMDA receptor activity (â¼25-90nM). The latter estimates are closer to the low nanomolar estimated thermodynamic limit of glutamate transporters. The reasons for this discrepancy are not known, but it has been suggested that microdialysis measurements could overestimate ambient extracellular glutamate because of reduced glutamate transporter activity in a region of metabolically impaired neuropil adjacent to the dialysis probe. We explored this issue by measuring diffusion gradients created by varying membrane densities of glutamate transporters expressed in Xenopus oocytes. With free diffusion from a pseudo-infinite 10µM glutamate source, the surface concentration of glutamate depended on transporter density and was reduced over 2 orders of magnitude by transporters expressed at membrane densities similar to those previously reported in hippocampus. We created a diffusion model to simulate the effect of transport impairment on microdialysis measurements with boundary conditions corresponding to a 100µm radius probe. A gradient of metabolic disruption in a thin (â¼100µm) region of neuropil adjacent to the probe increased predicted [Glu] in the dialysate over 100-fold. The results provide support for electrophysiological estimates of submicromolar ambient extracellular [Glu] in brain and provide a possible explanation for the higher values reported using microdialysis approaches.
Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/fisiología , Ácido Glutámico/metabolismo , Sistema de Transporte de Aminoácidos X-AG/genética , Animales , Difusión , Transportador 3 de Aminoácidos Excitadores/genética , Transportador 3 de Aminoácidos Excitadores/metabolismo , Humanos , Cinética , Microdiálisis , Modelos Estadísticos , Oocitos/metabolismo , XenopusRESUMEN
Mammals express seven transporters from the SLC1 (solute carrier 1) gene family, including five acidic amino acid transporters (EAAT1-5) and two neutral amino acid transporters (ASCT1-2). In contrast, insects of the order Diptera possess only two SLC1 genes. In this work we show that in the mosquito Culex quinquefasciatus, a carrier of West Nile virus, one of its two SLC1 EAAT-like genes encodes a transporter that displays an unusual selectivity for dicarboxylic acids over acidic amino acids. In eukaryotes, dicarboxylic acid uptake has been previously thought to be mediated exclusively by transporters outside the SLC1 family. The dicarboxylate selectivity was found to be associated with two residues in transmembrane domain 8, near the presumed substrate binding site. These residues appear to be conserved in all eukaryotic SLC1 transporters (Asp444 and Thr448, human EAAT3 numbering) with the exception of this novel C. quinquefasciatus transporter and an ortholog from the yellow fever mosquito Aedes aegypti, in which they are changed to Asn and Ala. In the prokaryotic EAAT-like SLC1 transporter DctA, a dicarboxylate transporter which was lost in the lineage leading to eukaryotes, the corresponding TMD8 residues are Ser and Ala. Functional analysis of engineered mutant mosquito and human transporters expressed in Xenopus laevis oocytes provide support for a model defining interactions of charged and polar transporter residues in TMD8 with α-amino acids and ions. Together with the phylogenetic evidence, the functional data suggest that a novel route of dicarboxylic acid uptake evolved in these mosquitos by mutations in an ancestral glutamate transporter gene.
Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/metabolismo , Culex/metabolismo , Ácidos Dicarboxílicos/metabolismo , Transportador 3 de Aminoácidos Excitadores/metabolismo , Proteínas de Insectos/metabolismo , Secuencia de Aminoácidos , Sistema de Transporte de Aminoácidos X-AG/clasificación , Sistema de Transporte de Aminoácidos X-AG/genética , Animales , Sitios de Unión/genética , Transporte Biológico , Culex/genética , Transportadores de Ácidos Dicarboxílicos/clasificación , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Transportador 3 de Aminoácidos Excitadores/clasificación , Transportador 3 de Aminoácidos Excitadores/genética , Femenino , Humanos , Proteínas de Insectos/genética , Potenciales de la Membrana/fisiología , Datos de Secuencia Molecular , Mutación , Oocitos/metabolismo , Oocitos/fisiología , Filogenia , Homología de Secuencia de Aminoácido , Xenopus laevisRESUMEN
In this study we characterized the pharmacological selectivity and physiological actions of a new arylaspartate glutamate transporter blocker, L-threo-ß-benzylaspartate (L-TBA). At concentrations up to 100 µM, L-TBA did not act as an AMPA receptor (AMPAR) or NMDA receptor (NMDAR) agonist or antagonist when applied to outside-out patches from mouse hippocampal CA1 pyramidal neurons. L-TBA had no effect on the amplitude of field excitatory postsynaptic potentials (fEPSPs) recorded at the Schaffer collateral-CA1 pyramidal cell synapse. Excitatory postsynaptic currents (EPSCs) in CA1 pyramidal neurons were unaffected by L-TBA in the presence of physiological extracellular Mg(2+) concentrations, but in Mg(2+)-free solution, EPSCs were significantly prolonged as a consequence of increased NMDAR activity. Although L-TBA exhibited approximately four-fold selectivity for neuronal EAAT3 over glial EAAT1/EAAT2 transporter subtypes expressed in Xenopus oocytes, the L-TBA concentration-dependence of the EPSC charge transfer increase in the absence of Mg(2+) was the same in hippocampal slices from EAAT3 +/+ and EAAT3 -/- mice, suggesting that TBA effects were primarily due to block of glial transporters. Consistent with this, L-TBA blocked synaptically evoked transporter currents in CA1 astrocytes with a potency in accord with its block of heterologously expressed glial transporters. Extracellular recording in the presence of physiological Mg(2+) revealed that L-TBA prolonged fEPSPs in a frequency-dependent manner by selectively increasing the NMDAR-mediated component of the fEPSP during short bursts of activity. The data indicate that glial glutamate transporters play a dominant role in limiting extrasynaptic transmitter diffusion and binding to NMDARs. Furthermore, NMDAR signaling is primarily limited by voltage-dependent Mg(2+) block during low-frequency activity, while the relative contribution of transport increases during short bursts of higher frequency signaling.
Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/antagonistas & inhibidores , Ácido Aspártico/análogos & derivados , Inhibidores Enzimáticos/farmacología , Células Piramidales/metabolismo , Animales , Ácido Aspártico/farmacología , Magnesio/farmacología , Ratones , Ratones Noqueados , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Especificidad por Sustrato , Transmisión Sináptica/efectos de los fármacosRESUMEN
The transport of glutamate is coupled to the co-transport of three Na+ ions and the countertransport of one K+ ion. In addition to this carrier-type exchange behaviour, glutamate transporters also behave as chloride channels. The chloride channel activity is strongly influenced by the cations that are involved in coupled flux, making glutamate transporters representative of the ambiguous interface between carriers and channels. In this paper, we review the interaction of alkali cations with glutamate transporters in terms of these diverse functions. We also present a model derived from electrostatic mapping of the predicted cation-binding sites in the X-ray crystal structure of the Pyrococcus horikoshii transporter GltPh and in its human glutamate transporter homologue EAAT3. Two predicted Na+-binding sites were found to overlap precisely with the Tl+ densities observed in the aspartate-bound complex. A novel third site predicted to favourably bind Na+ (but not Tl+) is formed by interaction with the substrate and the occluding HP2 loop. A fourth predicted site in the apo state exhibits selectivity for K+ over both Na+ and Tl+. Notably, this K+ site partially overlaps the glutamate-binding site, and their binding is mutually exclusive. These results are consistent with kinetic and structural data and suggest a plausible mechanism for the flux coupling of glutamate with Na+ and K+ ions.
Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Cationes/química , Sitios de Unión , Simulación por Computador , Humanos , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Pyrococcus horikoshii/metabolismo , TermodinámicaRESUMEN
In the brain, the neurotransmitter glutamate is removed from the synaptic cleft by (Na(+) + K(+))-coupled transporters by an electrogenic process. Moreover, these transporters mediate a sodium- and glutamate-dependent uncoupled chloride conductance. In contrast to the wild type, the uptake of radiolabeled substrate by the I421C mutant is inhibited by the membrane-impermeant [2-(trimethylammonium)ethyl]methanethiosulfonate and also by other sulfhydryl reagents. In the wild-type and the unmodified mutant, substrate-induced currents are inwardly rectifying and reflect the sum of the coupled electrogenic flux and the anion conductance. Remarkably, the I421C mutant modified by sulfhydryl reagents exhibits currents that are non-rectifying and reverse at the equilibrium potential for chloride. Strikingly, almost 10-fold higher concentrations of d-aspartate are required to activate the currents in the modified mutant as compared with untreated I421C. Under conditions in which only the coupled currents are observed, the modified mutant does not exhibit any currents. However, when the uncoupled current is dominant, sulfhydryl reagents cause >4-fold stimulation of this current. Thus, the modification of the cysteine introduced at position 421 impacts the coupled but not the uncoupled fluxes. Although both fluxes are activated by substrate, they behave as independent processes that are in dynamic equilibrium.