Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(36): e2303867120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639587

RESUMEN

Neutrophils store microbicidal glycoproteins in cytosolic granules to fight intruding pathogens, but their granule distribution and formation mechanism(s) during granulopoiesis remain unmapped. Herein, we comprehensively profile the neutrophil N-glycoproteome with spatiotemporal resolution by analyzing four key types of intracellular organelles isolated from blood-derived neutrophils and during their maturation from bone marrow-derived progenitors using a glycomics-guided glycoproteomics approach. Interestingly, the organelles of resting neutrophils exhibited distinctive glycophenotypes including, most strikingly, highly truncated N-glycans low in α2,6-sialylation and Lewis fucosylation decorating a diverse set of microbicidal proteins (e.g., myeloperoxidase, azurocidin, neutrophil elastase) in the azurophilic granules. Excitingly, proteomics and transcriptomics data from discrete myeloid progenitor stages revealed that profound glycoproteome remodeling underpins the promyelocytic-to-metamyelocyte transition and that the glycophenotypic differences are driven primarily by dynamic changes in protein expression and less by changes within the glycosylation machinery. Notable exceptions were the oligosaccharyltransferase subunits responsible for initiation of N-glycoprotein biosynthesis that were strongly expressed in early myeloid progenitors correlating with relatively high levels of glycosylation of the microbicidal proteins in the azurophilic granules. Our study provides spatiotemporal insights into the complex neutrophil N-glycoproteome featuring intriguing organelle-specific N-glycosylation patterns formed by dynamic glycoproteome remodeling during the early maturation stages of the myeloid progenitors.


Asunto(s)
Neutrófilos , Proteoma , Glicosilación , Cognición , Gránulos Citoplasmáticos
2.
J Biol Chem ; 300(1): 105519, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042488

RESUMEN

Corticosteroid-binding globulin (CBG) delivers anti-inflammatory cortisol to inflamed tissues through proteolysis of an exposed reactive center loop (RCL) by neutrophil elastase (NE). We previously demonstrated that RCL-localized Asn347-linked N-glycans impact NE proteolysis, but a comprehensive structure-function characterization of the RCL glycosylation is still required to better understand CBG glycobiology. Herein, we first performed RCL-centric glycoprofiling of serum-derived CBG to elucidate the Asn347-glycans and then used molecular dynamics simulations to study their impact on NE proteolysis. Importantly, we also identified O-glycosylation (di/sialyl T) across four RCL sites (Thr338/Thr342/Thr345/Ser350) of serum CBG close to the NE-targeted Val344-Thr345 cleavage site. A restricted N- and O-glycan co-occurrence pattern on the RCL involving exclusively Asn347 and Thr338 glycosylation was experimentally observed and supported in silico by modeling of a CBG-GalNAc-transferase (GalNAc-T) complex with various RCL glycans. GalNAc-T2 and GalNAc-T3 abundantly expressed by liver and gall bladder, respectively, showed in vitro a capacity to transfer GalNAc (Tn) to multiple RCL sites suggesting their involvement in RCL O-glycosylation. Recombinant CBG was then used to determine roles of RCL O-glycosylation through longitudinal NE-centric proteolysis experiments, which demonstrated that both sialoglycans (disialyl T) and asialoglycans (T) decorating Thr345 inhibit NE proteolysis. Synthetic RCL O-glycopeptides expanded on these findings by showing that Thr345-Tn and Thr342-Tn confer strong and moderate protection against NE cleavage, respectively. Molecular dynamics substantiated that short Thr345-linked O-glycans abrogate NE interactions. In conclusion, we report on biologically relevant CBG RCL glycosylation events, which improve our understanding of mechanisms governing cortisol delivery to inflamed tissues.


Asunto(s)
Elastasa de Leucocito , Transcortina , Glicosilación , Hidrocortisona/metabolismo , Elastasa de Leucocito/metabolismo , Polisacáridos , Proteolisis , Transcortina/genética , Transcortina/química , Transcortina/metabolismo , Humanos
3.
Mol Cell Proteomics ; 22(7): 100586, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37268159

RESUMEN

While altered protein glycosylation is regarded a trait of oral squamous cell carcinoma (OSCC), the heterogeneous and dynamic glycoproteome of tumor tissues from OSCC patients remain unmapped. To this end, we here employ an integrated multi-omics approach comprising unbiased and quantitative glycomics and glycoproteomics applied to a cohort of resected primary tumor tissues from OSCC patients with (n = 19) and without (n = 12) lymph node metastasis. While all tumor tissues displayed relatively uniform N-glycome profiles suggesting overall stable global N-glycosylation during disease progression, altered expression of six sialylated N-glycans was found to correlate with lymph node metastasis. Notably, glycoproteomics and advanced statistical analyses uncovered altered site-specific N-glycosylation revealing previously unknown associations with several clinicopathological features. Importantly, the glycomics and glycoproteomics data unveiled that comparatively high abundance of two core-fucosylated and sialylated N-glycans (Glycan 40a and Glycan 46a) and one N-glycopeptide from fibronectin were associated with low patient survival, while a relatively low abundance of N-glycopeptides from both afamin and CD59 were also associated with poor survival. This study provides insight into the complex OSCC tissue N-glycoproteome, thereby forming an important resource to further explore the underpinning disease mechanisms and uncover new prognostic glycomarkers for OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Humanos , Glicosilación , Metástasis Linfática , Glicopéptidos/metabolismo , Proteoma/metabolismo , Polisacáridos/análisis
4.
Nat Methods ; 18(11): 1304-1316, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34725484

RESUMEN

Glycoproteomics is a powerful yet analytically challenging research tool. Software packages aiding the interpretation of complex glycopeptide tandem mass spectra have appeared, but their relative performance remains untested. Conducted through the HUPO Human Glycoproteomics Initiative, this community study, comprising both developers and users of glycoproteomics software, evaluates solutions for system-wide glycopeptide analysis. The same mass spectrometrybased glycoproteomics datasets from human serum were shared with participants and the relative team performance for N- and O-glycopeptide data analysis was comprehensively established by orthogonal performance tests. Although the results were variable, several high-performance glycoproteomics informatics strategies were identified. Deep analysis of the data revealed key performance-associated search parameters and led to recommendations for improved 'high-coverage' and 'high-accuracy' glycoproteomics search solutions. This study concludes that diverse software packages for comprehensive glycopeptide data analysis exist, points to several high-performance search strategies and specifies key variables that will guide future software developments and assist informatics decision-making in glycoproteomics.


Asunto(s)
Glicopéptidos/sangre , Glicoproteínas/sangre , Informática/métodos , Proteoma/análisis , Proteómica/métodos , Investigadores/estadística & datos numéricos , Programas Informáticos , Glicosilación , Humanos , Proteoma/metabolismo , Espectrometría de Masas en Tándem
5.
Mol Cell Proteomics ; 20: 100026, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33127837

RESUMEN

The complexity and dynamics of the immensely heterogeneous glycoproteome of the prostate cancer (PCa) tumor microenvironment remain incompletely mapped, a knowledge gap that impedes our molecular-level understanding of the disease. To this end, we have used sensitive glycomics and glycoproteomics to map the protein-, cell-, and tumor grade-specific N- and O-glycosylation in surgically removed PCa tissues spanning five histological grades (n = 10/grade) and tissues from patients with benign prostatic hyperplasia (n = 5). Quantitative glycomics revealed PCa grade-specific alterations of the oligomannosidic-, paucimannosidic-, and branched sialylated complex-type N-glycans, and dynamic remodeling of the sialylated core 1- and core 2-type O-glycome. Deep quantitative glycoproteomics identified ∼7400 unique N-glycopeptides from 500 N-glycoproteins and ∼500 unique O-glycopeptides from nearly 200 O-glycoproteins. With reference to a recent Tissue and Blood Atlas, our data indicate that paucimannosidic glycans of the PCa tissues arise mainly from immune cell-derived glycoproteins. Furthermore, the grade-specific PCa glycosylation arises primarily from dynamics in the cellular makeup of the PCa tumor microenvironment across grades involving increased oligomannosylation of prostate-derived glycoproteins and decreased bisecting GlcNAcylation of N-glycans carried by the extracellular matrix proteins. Furthermore, elevated expression of several oligosaccharyltransferase subunits and enhanced N-glycoprotein site occupancy were observed associated with PCa progression. Finally, correlations between the protein-specific glycosylation and PCa progression were observed including increased site-specific core 2-type O-glycosylation of collagen VI. In conclusion, integrated glycomics and glycoproteomics have enabled new insight into the complexity and dynamics of the tissue glycoproteome associated with PCa progression generating an important resource to explore the underpinning disease mechanisms.


Asunto(s)
Glicopéptidos/metabolismo , Glicoproteínas/metabolismo , Neoplasias de la Próstata/metabolismo , Progresión de la Enfermedad , Glicómica , Glicosilación , Humanos , Masculino , Clasificación del Tumor , Polisacáridos/metabolismo , Próstata/metabolismo , Hiperplasia Prostática/metabolismo , Neoplasias de la Próstata/patología , Proteoma , Proteómica
6.
J Biol Chem ; 296: 100144, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33273015

RESUMEN

Myeloperoxidase (MPO) plays essential roles in neutrophil-mediated immunity via the generation of reactive oxidation products. Complex carbohydrates decorate MPO at discrete sites, but their functional relevance remains elusive. To this end, we have characterised the structure-biosynthesis-activity relationship of neutrophil MPO (nMPO). Mass spectrometry demonstrated that nMPO carries both characteristic under-processed and hyper-truncated glycans. Occlusion of the Asn355/Asn391-glycosylation sites and the Asn323-/Asn483-glycans, located in the MPO dimerisation zone, was found to affect the local glycan processing, thereby providing a molecular basis of the site-specific nMPO glycosylation. Native mass spectrometry, mass photometry and glycopeptide profiling revealed significant molecular complexity of diprotomeric nMPO arising from heterogeneous glycosylation, oxidation, chlorination and polypeptide truncation variants and a previously unreported low-abundance monoprotomer. Longitudinal profiling of maturing, mature, granule-separated and pathogen-stimulated neutrophils demonstrated that nMPO is dynamically expressed during granulopoiesis, unevenly distributed across granules and degranulated upon activation. We also show that proMPO-to-MPO maturation occurs during early/mid-stage granulopoiesis. While similar global MPO glycosylation was observed across conditions, the conserved Asn355-/Asn391-sites displayed elevated glycan hyper-truncation, which correlated with higher enzyme activities of MPO in distinct granule populations. Enzymatic trimming of the Asn355-/Asn391-glycans recapitulated the activity gain and showed that nMPO carrying hyper-truncated glycans at these positions exhibits increased thermal stability, polypeptide accessibility and ceruloplasmin-mediated inhibition potential relative to native nMPO. Finally, molecular modelling revealed that hyper-truncated Asn355-glycans positioned in the MPO-ceruloplasmin interface are critical for uninterrupted inhibition. Here, through an innovative and comprehensive approach, we report novel functional roles of MPO glycans, providing new insight into neutrophil-mediated immunity.


Asunto(s)
Gránulos Citoplasmáticos/enzimología , Glicopéptidos/metabolismo , Neutrófilos/enzimología , Peroxidasa/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Glicopéptidos/química , Glicosilación , Humanos
7.
Glycobiology ; 32(3): 218-229, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-34939086

RESUMEN

We recently discovered that human neutrophils express immunomodulatory glycoproteins carrying unusual and highly truncated paucimannosidic N-glycans (Man1-3GlcNAc2Fuc0-1), but their biosynthesis remains elusive. Guided by the well-characterized truncation pathway in invertebrates and plants in which the N-acetyl-ß-D-hexosaminidase (Hex) isoenzymes catalyze paucimannosidic protein (PMP) formation, we here set out to test if the homologous human Hex α and ß subunits encoded by HEXA and HEXB drive a similar truncation pathway in human neutrophils. To this end, we performed quantitative glycomics and glycoproteomics of several CRISPR-Cas9-edited Hex-disrupted neutrophil-like HL-60 mutants (HEXA-KO and HEXB-KO) and matching unedited cell lines. Hex disruption was validated using next-generation sequencing, enzyme-linked immunosorbent assay (ELISA), quantitative proteomics and Hex activity assays. Excitingly, all Hex-disrupted mutants displayed significantly reduced levels of paucimannosylation, particularly Man2-3GlcNAc2Fuc1, relative to unedited HL-60 suggesting that both HEXA and HEXB contribute to PMP formation via a hitherto unexplored truncation pathway in neutrophils. Quantitative N-glycomics indeed demonstrated reduced utilization of a putative noncanonical truncation pathway in favor of the canonical elongation pathway in all Hex-disrupted mutants relative to unedited controls. Quantitative glycoproteomics recapitulated the truncation-to-elongation switch in all Hex-disrupted mutants and showed a greater switch for N-glycoproteins cotrafficking with Hex to the azurophilic granules of neutrophils such as myeloperoxidase. Finally, we supported the Hex-PMP relationship by documenting that primary neutrophils isolated from an early-onset Sandhoff disease patient (HEXB-/-) displayed dramatically reduced paucimannosylation relative to neutrophils from an age-matched unaffected donor. We conclude that both human Hex α and ß mediate PMP formation via a putative noncanonical truncation pathway in neutrophils.


Asunto(s)
Hexosaminidasas , Neutrófilos , Hexosaminidasa A , Hexosaminidasa B , Humanos , beta-N-Acetilhexosaminidasas/genética
8.
Biochem Soc Trans ; 49(1): 161-186, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33439247

RESUMEN

Facilitated by advances in the separation sciences, mass spectrometry and informatics, glycoproteomics, the analysis of intact glycopeptides at scale, has recently matured enabling new insights into the complex glycoproteome. While diverse quantitative glycoproteomics strategies capable of mapping monosaccharide compositions of N- and O-linked glycans to discrete sites of proteins within complex biological mixtures with considerable sensitivity, quantitative accuracy and coverage have become available, developments supporting the advancement of structure-focused glycoproteomics, a recognised frontier in the field, have emerged. Technologies capable of providing site-specific information of the glycan fine structures in a glycoproteome-wide context are indeed necessary to address many pending questions in glycobiology. In this review, we firstly survey the latest glycoproteomics studies published in 2018-2020, their approaches and their findings, and then summarise important technological innovations in structure-focused glycoproteomics. Our review illustrates that while the O-glycoproteome remains comparably under-explored despite the emergence of new O-glycan-selective mucinases and other innovative tools aiding O-glycoproteome profiling, quantitative glycoproteomics is increasingly used to profile the N-glycoproteome to tackle diverse biological questions. Excitingly, new strategies compatible with structure-focused glycoproteomics including novel chemoenzymatic labelling, enrichment, separation, and mass spectrometry-based detection methods are rapidly emerging revealing glycan fine structural details including bisecting GlcNAcylation, core and antenna fucosylation, and sialyl-linkage information with protein site resolution. Glycoproteomics has clearly become a mainstay within the glycosciences that continues to reach a broader community. It transpires that structure-focused glycoproteomics holds a considerable potential to aid our understanding of systems glycobiology and unlock secrets of the glycoproteome in the immediate future.


Asunto(s)
Glicómica/tendencias , Glicoproteínas/química , Proteómica/tendencias , Glicómica/métodos , Glicopéptidos/química , Glicosilación , Humanos , Conformación Proteica , Proteómica/métodos
9.
Mol Cell Proteomics ; 18(2): 182-199, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30242111

RESUMEN

Malaria in pregnancy is a public health concern in malaria-endemic areas. Accumulation of maternal immune cells in the placenta and increased levels of inflammatory cytokines caused by sequestration of Plasmodium falciparum-infected erythrocytes have been associated to poor neonatal outcomes, including low birth weight because of fetal growth restriction. Little is known about the molecular changes occurring in a P. falciparum-infected placenta that has developed placental malaria during pregnancy but had the parasites cleared by pharmacological treatment (past infection). We conducted an integrated proteome, phosphoproteome and glycoproteome analysis in past P. falciparum-infected placentas aiming to find molecular changes associated with placental malaria. A total of 2946 proteins, 1733 N-linked glycosites and 4100 phosphosites were identified and quantified in this study, disclosing overrepresented processes related to oxidative stress, protein folding and regulation of apoptosis in past-infected placentas Moreover, AKT and ERK signaling pathways activation, together with clinical data, were further correlated to an increased apoptosis in past-infected placentas. This study showed apoptosis-related mechanisms associated with placental malaria that can be further explored as therapeutic target against adverse pregnancy outcomes.


Asunto(s)
Malaria Falciparum/metabolismo , Placenta/metabolismo , Complicaciones Parasitarias del Embarazo/metabolismo , Proteómica/métodos , Animales , Modelos Animales de Enfermedad , Femenino , Glicosilación , Humanos , Sistema de Señalización de MAP Quinasas , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Ratones , Fosforilación , Placenta/parasitología , Embarazo , Complicaciones Parasitarias del Embarazo/tratamiento farmacológico , Mapas de Interacción de Proteínas
10.
Glycobiology ; 30(9): 679-694, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32149347

RESUMEN

Protein glycosylation impacts the development and function of innate immune cells. The glycophenotypes and the glycan remodelling associated with the maturation of macrophages from monocytic precursor populations remain incompletely described. Herein, label-free porous graphitised carbon-liquid chromatography-tandem mass spectrometry (PGC-LC-MS/MS) was employed to profile with high resolution the N- and O-glycome associated with human monocyte-to-macrophage transition. Primary blood-derived CD14+ monocytes were differentiated ex vivo in the absence of strong anti- and proinflammatory stimuli using a conventional 7-day granulocyte-macrophage colony-stimulating factor differentiation protocol with longitudinal sampling. Morphology and protein expression monitored by light microscopy and proteomics validated the maturation process. Glycomics demonstrated that monocytes and macrophages display similar N-glycome profiles, comprising predominantly paucimannosidic (Man1-3GlcNAc2Fuc0-1, 22.1-30.8%), oligomannosidic (Man5-9GlcNAc2, 29.8-35.7%) and α2,3/6-sialylated complex-type N-glycans with variable core fucosylation (27.6-39.1%). Glycopeptide analysis validated conjugation of these glycans to human proteins, while quantitative proteomics monitored the glycoenzyme expression levels during macrophage differentiation. Significant interperson glycome variations were observed suggesting a considerable physiology-dependent or heritable heterogeneity of CD14+ monocytes. Only few N-glycome changes correlated with the monocyte-to-macrophage transition across donors including decreased core fucosylation and reduced expression of mannose-terminating (paucimannosidic-/oligomannosidic-type) N-glycans in macrophages, while lectin flow cytometry indicated that more dramatic cell surface glycan remodelling occurs during maturation. The less heterogeneous core 1-rich O-glycome showed a minor decrease in core 2-type O-glycosylation but otherwise remained unchanged with macrophage maturation. This high-resolution glycome map underpinning normal monocyte-to-macrophage transition, the most detailed to date, aids our understanding of the molecular makeup pertaining to two vital innate immune cell types and forms an important reference for future glycoimmunological studies.


Asunto(s)
Macrófagos/metabolismo , Monocitos/metabolismo , Polisacáridos/metabolismo , Cromatografía Liquida , Glicómica , Glicopéptidos/análisis , Glicosilación , Humanos , Polisacáridos/química , Espectrometría de Masas en Tándem
12.
Proteomics ; 19(21-22): e1900174, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31576646

RESUMEN

The histology-based Gleason score (GS) of prostate cancer (PCa) tissue biopsy is the most accurate predictor of disease aggressiveness and an important measure to guide treatment strategies and patient management. The variability associated with PCa tumor sampling and the subjective determination of the GS are challenges that limit accurate diagnostication and prognostication. Thus, novel molecular signatures are needed to distinguish between indolent and aggressive forms of PCa for better patient management and outcomes. Herein, label-free LC-MS/MS proteomics is used to profile the proteome of 50 PCa tissues spanning five grade groups (n = 10 per group) relative to tissues from individuals with benign prostatic hyperplasia (BPH). Over 2000 proteins are identified albeit at different levels between and within the patient groups, revealing biological processes associated with specific grades. A panel of 11 prostate-derived proteins including IGKV3D-20, RNASET2, TACC2, ANXA7, LMOD1, PRCP, GYG1, NDUFV1, H1FX, APOBEC3C, and CTSZ display the potential to stratify patients from low and high PCa grade groups. Parallel reaction monitoring of the same sample cohort validate the differential expression of LMOD1, GYG1, IGKV3D-20, and RNASET2. The four proteins associated with low and high PCa grades reported here warrant further exploration as candidate biomarkers for PCa aggressiveness.


Asunto(s)
Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteoma/metabolismo , Progresión de la Enfermedad , Humanos , Masculino , Clasificación del Tumor , Proteómica
13.
Proteomics ; 19(21-22): e1900010, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31419058

RESUMEN

While aberrant protein glycosylation is a recognized characteristic of human cancers, advances in glycoanalytics continue to discover new associations between glycoproteins and tumorigenesis. This glycomics-centric study investigates a possible link between protein paucimannosylation, an under-studied class of human N-glycosylation [Man1-3 GlcNAc2 Fuc0-1 ], and cancer. The paucimannosidic glycans (PMGs) of 34 cancer cell lines and 133 tissue samples spanning 11 cancer types and matching non-cancerous specimens are profiled from 467 published and unpublished PGC-LC-MS/MS N-glycome datasets collected over a decade. PMGs, particularly Man2-3 GlcNAc2 Fuc1 , are prominent features of 29 cancer cell lines, but the PMG level varies dramatically across and within the cancer types (1.0-50.2%). Analyses of paired (tumor/non-tumor) and stage-stratified tissues demonstrate that PMGs are significantly enriched in tumor tissues from several cancer types including liver cancer (p = 0.0033) and colorectal cancer (p = 0.0017) and is elevated as a result of prostate cancer and chronic lymphocytic leukaemia progression (p < 0.05). Surface expression of paucimannosidic epitopes is demonstrated on human glioblastoma cells using immunofluorescence while biosynthetic involvement of N-acetyl-ß-hexosaminidase is indicated by quantitative proteomics. This intriguing association between protein paucimannosylation and human cancers warrants further exploration to detail the biosynthesis, cellular location(s), protein carriers, and functions of paucimannosylation in tumorigenesis and metastasis.


Asunto(s)
Manosa/metabolismo , Neoplasias/metabolismo , Línea Celular Tumoral , Cromatografía Liquida , Progresión de la Enfermedad , Glicosilación , Humanos , Espectrometría de Masas en Tándem
14.
Proteomics ; 16(1): 159-73, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26552850

RESUMEN

Head and neck cancers, including oral squamous cell carcinoma (OSCC), are the sixth most common malignancy in the world and are characterized by poor prognosis and a low survival rate. Saliva is oral fluid with intimate contact with OSCC. Besides non-invasive, simple, and rapid to collect, saliva is a potential source of biomarkers. In this study, we build an SRM assay that targets fourteen OSCC candidate biomarker proteins, which were evaluated in a set of clinically-derived saliva samples. Using Skyline software package, we demonstrated a statistically significant higher abundance of the C1R, LCN2, SLPI, FAM49B, TAGLN2, CFB, C3, C4B, LRG1, SERPINA1 candidate biomarkers in the saliva of OSCC patients. Furthermore, our study also demonstrated that CFB, C3, C4B, SERPINA1 and LRG1 are associated with the risk of developing OSCC. Overall, this study successfully used targeted proteomics to measure in saliva a panel of biomarker candidates for OSCC.


Asunto(s)
Carcinoma de Células Escamosas/diagnóstico , Neoplasias de la Boca/diagnóstico , Proteínas/análisis , Saliva/química , Secuencia de Aminoácidos , Biomarcadores de Tumor/análisis , Carcinoma de Células Escamosas/química , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , Boca/patología , Neoplasias de la Boca/química , Proteómica
15.
Clin Sci (Lond) ; 130(10): 785-99, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26823560

RESUMEN

EEF1D (eukaryotic translation elongation factor 1δ) is a subunit of the elongation factor 1 complex of proteins that mediates the elongation process during protein synthesis via enzymatic delivery of aminoacyl-tRNAs to the ribosome. Although the functions of EEF1D in the translation process are recognized, EEF1D expression was found to be unbalanced in tumours. In the present study, we demonstrate the overexpression of EEF1D in OSCC (oral squamous cell carcinoma), and revealed that EEF1D and protein interaction partners promote the activation of cyclin D1 and vimentin proteins. EEF1D knockdown in OSCC reduced cell proliferation and induced EMT (epithelial-mesenchymal transition) phenotypes, including cell invasion. Taken together, these results define EEF1D as a critical inducer of OSCC proliferation and EMT.


Asunto(s)
Carcinoma de Células Escamosas/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias de Cabeza y Cuello/genética , Neoplasias de la Boca/genética , Factor 1 de Elongación Peptídica/genética , Carcinoma de Células Escamosas/diagnóstico , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias de Cabeza y Cuello/diagnóstico , Humanos , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Fenotipo , Carcinoma de Células Escamosas de Cabeza y Cuello
16.
Glycoconj J ; 33(6): 937-951, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27234710

RESUMEN

Glycosylation is a very important post-translational modification involved in various cellular processes, such as cell adhesion, signal transduction and immune response. Urine is a rich source of glycoproteins and attractive biological fluid for biomarker discovery, owing to its availability, ease of collection, and correlation with pathophysiology of diseases. Although the urinary proteomics have been explored previously, the urinary glycoproteome characterization remains challenging requiring the development and optimization of analytical and bioinformatics methods for protein glycoprofiling. This study describes the high confident identification of 472 unique N-glycosylation sites covering 256 urinary glycoproteins. Besides, 202 unique N-glycosylation sites were identified in low molecular weight endogenous glycopeptides, which belong to 90 glycoproteins. Global site-specific characterization of the N-linked glycan heterogeneity was achieved by intact glycopeptide analysis, revealing 303 unique glycopeptides most of them displaying complex/hybrid glycans composed by sialic acid and fucose. These datasets consist in a valuable resource of glycoproteins and N-glycosylation sites found in healthy human urine that can be further explored in different disorders, in which the N-linked glycosylation may be aberrant.


Asunto(s)
Glicopéptidos/orina , Glicoproteínas/orina , Adulto , Glicosilación , Humanos , Masculino
17.
J Proteome Res ; 13(4): 2080-93, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24625128

RESUMEN

ADAM17 has been initially identified as the main sheddase responsible for releasing the soluble form of a variety of cell-surface proteins, including growth factors, cytokines, cell adhesion molecules, and receptors, most of which are associated with pathological processes, including cancer and inflammation. However, the function and composition of the ADAM17-dependent secretome on a proteome-wide scale is poorly understood. In this study, we observed that the ADAM17-dependent secretome plays an important role in promoting cell proliferation and migration. To further demonstrate the repertoire of proteins involved in this cross-talk, we employed mass-spectrometry-based proteomics using nonmetabolic and metabolic labeling approaches to explore the secretome composition of wild-type and ADAM17(-/-) knockout mouse embryonic fibroblast (mEF) cells. Bioinformatic analyses indicated the differential regulation of 277 soluble proteins in the ADAM17-dependent secretome as well as novel direct ADAM17 cleavage substrates, such as mimecan and perlecan. Furthermore, we found that the ADAM17-dependent secretome promoted an opposite regulation of ERK and FAK pathways as well as PPARγ downstream activation. These findings demonstrated fine-tuning of cell signaling rendered by the soluble molecules mediated by ADAM17.


Asunto(s)
Proteínas ADAM/metabolismo , Proteínas ADAM/fisiología , Proteoma/análisis , Transducción de Señal/fisiología , Proteínas ADAM/genética , Proteína ADAM17 , Animales , Movimiento Celular/genética , Proliferación Celular/genética , Células Cultivadas , Técnicas de Inactivación de Genes , Marcaje Isotópico , Ratones , Proteoma/genética , Proteoma/metabolismo
18.
Mol Cancer ; 13: 24, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24495306

RESUMEN

BACKGROUND: ADAM17 is one of the main sheddases of the cells and it is responsible for the cleavage and the release of ectodomains of important signaling molecules, such as EGFR ligands. Despite the known crosstalk between ADAM17 and EGFR, which has been considered a promising targeted therapy in oral squamous cell carcinoma (OSCC), the role of ADAM17 in OSCC development is not clear. METHOD: In this study the effect of overexpressing ADAM17 in cell migration, viability, adhesion and proliferation was comprehensively appraised in vitro. In addition, the tumor size, tumor proliferative activity, tumor collagenase activity and MS-based proteomics of tumor tissues have been evaluated by injecting tumorigenic squamous carcinoma cells (SCC-9) overexpressing ADAM17 in immunodeficient mice. RESULTS: The proteomic analysis has effectively identified a total of 2,194 proteins in control and tumor tissues. Among these, 110 proteins have been down-regulated and 90 have been up-regulated in tumor tissues. Biological network analysis has uncovered that overexpression of ADAM17 regulates Erk pathway in OSCC and further indicates proteins regulated by the overexpression of ADAM17 in the respective pathway. These results are also supported by the evidences of higher viability, migration, adhesion and proliferation in SCC-9 or A431 cells in vitro along with the increase of tumor size and proliferative activity and higher tissue collagenase activity as an outcome of ADAM17 overexpression. CONCLUSION: These findings contribute to understand the role of ADAM17 in oral cancer development and as a potential therapeutic target in oral cancer. In addition, our study also provides the basis for the development of novel and refined OSCC-targeting approaches.


Asunto(s)
Proteínas ADAM/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias de la Boca/metabolismo , Proteínas ADAM/genética , Proteína ADAM17 , Animales , Western Blotting , Carcinoma de Células Escamosas/genética , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Proliferación Celular , Supervivencia Celular/fisiología , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos BALB C , Neoplasias de la Boca/genética , Proteómica , Reacción en Cadena en Tiempo Real de la Polimerasa , Transfección
19.
Exp Cell Res ; 318(15): 1913-25, 2012 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-22668500

RESUMEN

Considering that stimulation of melanogenesis may lead to alterations of cellular responses, besides melanin production, our main goal was to study the cellular effects of melanogenesis stimulation of B16-F10 melanoma cells. Our results show increased levels of the reactive oxygen species after 15 h of melanogenesis stimulation. Following 48 h of melanogenesis stimulation, proliferation was inhibited (by induction of cell cycle arrest in the G1 phase) and the expression levels of p21 mRNA were increased. In addition, melanogenesis stimulation did not induce cellular senescence. Proteomic analysis demonstrated the involvement of proteins from other pathways besides those related to the cell cycle, including protein disulfide isomerase A3, heat-shock protein 70, and fructose biphosphate aldolase A (all up-regulated), and lactate dehydrogenase (down-regulated). In RT-qPCR experiments, the levels of pyruvate kinase M2 mRNA dropped, whereas the levels of ATP synthase (beta-F1) mRNA increased. These data indicate that melanogenesis stimulation of B16-F10 cells leads to alterations in metabolism and cell cycle progression that may contribute to an induction of cell quiescence, which may provide a mechanism of resistance against cellular injury promoted by melanin synthesis.


Asunto(s)
Melaninas/biosíntesis , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Cloruro de Amonio/farmacología , Animales , Apoptosis , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Puntos de Control de la Fase G1 del Ciclo Celular , Expresión Génica , Genes Supresores de Tumor , Melanoma Experimental/genética , Ratones , Proteínas de Neoplasias/metabolismo , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tirosina/farmacología
20.
Curr Opin Chem Biol ; 73: 102272, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36758418

RESUMEN

N-Glycoproteomics, the system-wide study of glycans asparagine-linked to protein carriers, holds a unique and still largely untapped potential to provide deep insights into the complexity and dynamics of the heterogeneous N-glycoproteome. Despite the advent of innovative analytical and informatics tools aiding the analysis, N-glycoproteomics remains challenging and consequently largely restricted to specialised laboratories. Aiming to stimulate discussions of method harmonisation, data standardisation and reporting guidelines to make N-glycoproteomics more reproducible and accessible to the community, we here discuss critical considerations related to the design and execution of N-glycoproteomics experiments and highlight good practices in N-glycopeptide data collection, analysis, interpretation and sharing. Giving the rapid maturation and, expectedly, a wide-spread implementation of N-glycoproteomics capabilities across the community in future years, this piece aims to point out common pitfalls, to encourage good data sharing and documentation practices, and to highlight practical solutions and strategies to enhance the insight into the N-glycoproteome.


Asunto(s)
Glicoproteínas , Espectrometría de Masas en Tándem , Glicosilación , Espectrometría de Masas en Tándem/métodos , Proteómica/métodos , Glicopéptidos , Proteoma/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda