Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Br J Cancer ; 128(6): 1166-1175, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36732592

RESUMEN

BACKGROUND: Identifying biomarkers to predict immune checkpoint inhibitor (ICI) efficacy is warranted. Considering that somatic mutation-derived neoantigens induce strong immune responses, patients with a high tumour mutational burden reportedly tend to respond to ICIs. However, there are several conflicting data. Therefore, we focused on the original function of neoantigenic mutations and their impact on the tumour microenvironment (TME). METHODS: We evaluated 88 high-frequency microsatellite instability (MSI-H) colorectal cancers and analysed the function of the identified neoantigenic mutations and their influence on programmed cell death 1 (PD-1) blockade efficacy. The results were validated using The Cancer Genome Atlas (TCGA) datasets. RESULTS: We identified frameshift mutations in RNF43 as a common neoantigenic gene mutation in MSI-H tumours. However, loss-of-function RNF43 mutations induced noninflamed TME by activating the WNT/ß-catenin signalling pathway. In addition, loss of RNF43 function induced resistance to PD-1 blockade even in neoantigen-rich tumours. TCGA dataset analyses demonstrated that passenger rather than driver gene mutations were related to the inflamed TME in diverse cancer types. CONCLUSIONS: We propose a novel concept of "paradoxical neoantigenic mutations" that can induce noninflamed TME through their original gene functions, despite deriving neoantigens, suggesting the significance of qualities as well as quantities in neoantigenic mutations.


Asunto(s)
Neoplasias Colorrectales , Neoplasias , Humanos , Receptor de Muerte Celular Programada 1 , Microambiente Tumoral , Neoplasias/genética , Mutación , Inestabilidad de Microsatélites , Neoplasias Colorrectales/patología
2.
Exp Dermatol ; 32(3): 240-249, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36437644

RESUMEN

Immune checkpoint inhibitors (ICIs) have contributed significantly to the treatment of various types of cancer, including skin cancer. However, not all patients respond; some patients do not respond at all (primary resistance), while others experience recurrence after the initial response (acquired resistance). Therefore, overcoming ICI resistance is an urgent priority. Numerous ICI resistance mechanisms have been reported. They are seemingly quite complex, varying from patient to patient. However, most involve T-cell activation processes, especially in the tumor microenvironment (TME). ICIs exert their effects in the TME by reactivating suppressed T cells through inhibition of immune checkpoint molecules, such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1). Thus, this review focuses on the resistance mechanisms based on the T-cell activation process. Here, we classify the main mechanisms of ICI resistance into three categories based on (1) antigen recognition, (2) T-cell migration and infiltration, and (3) effector functions of T cells. By identifying and understanding these resistance mechanisms individually, including unknown mechanisms, we seek to contribute to the development of novel treatments to overcome ICI resistance.


Asunto(s)
Neoplasias , Neoplasias Cutáneas , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Microambiente Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias Cutáneas/tratamiento farmacológico , Inmunoterapia
3.
Skin Res Technol ; 29(8): e13437, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37632181

RESUMEN

BACKGROUND: Few studies have examined the effectiveness of the reciprocity law in ultraviolet excimer therapy. This study aimed to examine the difference in erythematous reaction in human skin when the irradiance of ultraviolet excimer treatment devices differed while the irradiation dose was constant. MATERIALS AND METHODS: This study, conducted at the Department of Dermatology, Chiba University, included 15 healthy adults aged 20-65 years (mean age, 46.3 years; seven men). Using ultraviolet excimer treatment devices with different irradiances (50 or 150 mW/cm2 ), the upper abdomen of each participant was irradiated with ultraviolet light at set irradiation doses (80, 100, 120, 140, 160, 180, and 200 mJ/cm2 ). The erythema index of each irradiated site was measured using a melanin- and erythema-measuring device, and the difference in erythema index before and 24 h after irradiation was the primary endpoint. RESULTS: The change in erythema index was significantly higher for an irradiance of 150 mW/cm2 . Significant differences (p < 0.05) were observed between these irradiance levels at irradiation doses of 100-200 mJ/cm2 . CONCLUSIONS: Even for the same irradiation dose, stronger erythematous reactions occurred at higher irradiances in ultraviolet excimer treatment. This suggests that the reciprocity law may not always hold true in excimer therapy.


Asunto(s)
Terapia Ultravioleta , Adulto , Masculino , Humanos , Persona de Mediana Edad , Eritema/etiología , Rayos Ultravioleta/efectos adversos , Piel , Melaninas
4.
Cell Rep ; 43(2): 113797, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38363680

RESUMEN

Immune checkpoint inhibitors exert clinical efficacy against various types of cancer through reinvigoration of exhausted CD8+ T cells that attack cancer cells directly in the tumor microenvironment (TME). Using single-cell sequencing and mouse models, we show that CXCL13, highly expressed in tumor-infiltrating exhausted CD8+ T cells, induces CD4+ follicular helper T (TFH) cell infiltration, contributing to anti-tumor immunity. Furthermore, a part of the TFH cells in the TME exhibits cytotoxicity and directly attacks major histocompatibility complex-II-expressing tumors. TFH-like cytotoxic CD4+ T cells have high LAG-3/BLIMP1 and low TCF1 expression without self-renewal ability, whereas non-cytotoxic TFH cells express low LAG-3/BLIMP1 and high TCF1 with self-renewal ability, closely resembling the relationship between terminally differentiated and stem-like progenitor exhaustion in CD8+ T cells, respectively. Our findings provide deep insights into TFH-like CD4+ T cell exhaustion with helper progenitor and cytotoxic differentiated functions, mediating anti-tumor immunity orchestrally with CD8+ T cells.


Asunto(s)
Agotamiento de Células T , Microambiente Tumoral , Animales , Ratones , Linfocitos T CD8-positivos , Diferenciación Celular , Linfocitos T CD4-Positivos
5.
Cancer Res ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635899

RESUMEN

T cell exhaustion is a major contributor to immunosuppression in the tumor microenvironment (TME). Blockade of key regulators of T cell exhaustion, such as PD-1, can reinvigorate tumor-specific T cells and activate anti-tumor immunity in various types of cancer. Here, we identified that CD106 was specifically expressed in exhausted CD8+ T cells in the TME using single-cell RNA-sequencing. High CD106 expression in the TME in clinical samples corresponded to improved response to cancer immunotherapy. CD106 in tumor-specific T cells suppressed anti-tumor immunity both in vitro and in vivo, and loss of CD106 in CD8+ T cells suppressed tumor growth and improved response to PD-1 blockade. Mechanistically, CD106 inhibited T-cell receptor (TCR) signaling by interacting with the TCR/CD3 complex and reducing its surface expression. Together, these findings provide insights into the immunosuppressive role of CD106 expressed in tumor-specific exhausted CD8+ T cells, identifying it as a potential biomarker and therapeutic target for cancer immunotherapy.

6.
Cancer Immunol Res ; 11(7): 895-908, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37062030

RESUMEN

IFNγ signaling pathway defects are well-known mechanisms of resistance to immune checkpoint inhibitors. However, conflicting data have been reported, and the detailed mechanisms remain unclear. In this study, we have demonstrated that resistance to immune checkpoint inhibitors owing to IFNγ signaling pathway defects may be primarily caused by reduced MHC-I expression rather than by the loss of inhibitory effects on cellular proliferation or decreased chemokine production. In particular, we found that chemokines that recruit effector T cells were mainly produced by immune cells rather than cancer cells in the tumor microenvironment of a mouse model, with defects in IFNγ signaling pathways. Furthermore, we found a response to immune checkpoint inhibitors in a patient with JAK-negative head and neck squamous cell carcinoma whose HLA-I expression level was maintained. In addition, CRISPR screening to identify molecules associated with elevated MHC-I expression independent of IFNγ signaling pathways demonstrated that guanine nucleotide-binding protein subunit gamma 4 (GNG4) maintained MHC-I expression via the NF-κB signaling pathway. Our results indicate that patients with IFNγ signaling pathway defects are not always resistant to immune checkpoint inhibitors and highlight the importance of MHC-I expression among the pathways and the possibility of NF-κB-targeted therapies to overcome such resistance. See related Spotlight by Haugh and Daud, p. 864.


Asunto(s)
Neoplasias de Cabeza y Cuello , Inhibidores de Puntos de Control Inmunológico , Animales , Ratones , FN-kappa B/metabolismo , Interferón gamma/metabolismo , Inmunoterapia/métodos , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
7.
Cancer Res Commun ; 2(7): 739-753, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36923281

RESUMEN

Some patients experience mixed response to immunotherapy, whose biological mechanisms and clinical impact have been obscure. We obtained two tumor samples from lymph node (LN) metastatic lesions in a same patient. Whole exome sequencing for the both tumors and single-cell sequencing for the both tumor-infiltrating lymphocytes (TIL) demonstrated a significant difference in tumor clonality and TILs' characteristics, especially exhausted T-cell clonotypes, although a close relationship between the tumor cell and T-cell clones were observed as a response of an overlapped exhausted T-cell clone to an overlapped neoantigen. To mimic the clinical setting, we generated a mouse model of several clones from a same tumor cell line. Similarly, differential tumor clones harbored distinct TILs, and one responded to programmed cell death protein 1 (PD-1) blockade but the other did not in this model. We further conducted cohort study (n = 503) treated with PD-1 blockade monotherapies to investigate the outcome of mixed response. Patients with mixed responses to PD-1 blockade had a poor prognosis in our cohort. Particularly, there were significant differences in both tumor and T-cell clones between the primary and LN lesions in a patient who experienced tumor response to anti-PD-1 mAb followed by disease progression in only LN metastasis. Our results underscore that intertumoral heterogeneity alters characteristics of TILs even in the same patient, leading to mixed response to immunotherapy and significant difference in the outcome. Significance: Several patients experience mixed responses to immunotherapies, but the biological mechanisms and clinical significance remain unclear. Our results from clinical and mouse studies underscore that intertumoral heterogeneity alters characteristics of TILs even in the same patient, leading to mixed response to immunotherapy and significant difference in the outcome.


Asunto(s)
Neoplasias , Animales , Ratones , Estudios de Cohortes , Neoplasias/genética , Inmunoterapia/métodos , Linfocitos T , Linfocitos Infiltrantes de Tumor
8.
Commun Biol ; 4(1): 1320, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34811492

RESUMEN

Although transcriptome alteration is an essential driver of carcinogenesis, the effects of chromosomal structural alterations on the cancer transcriptome are not yet fully understood. Short-read transcript sequencing has prevented researchers from directly exploring full-length transcripts, forcing them to focus on individual splice sites. Here, we develop a pipeline for Multi-Sample long-read Transcriptome Assembly (MuSTA), which enables construction of a transcriptome from long-read sequence data. Using the constructed transcriptome as a reference, we analyze RNA extracted from 22 clinical breast cancer specimens. We identify a comprehensive set of subtype-specific and differentially used isoforms, which extended our knowledge of isoform regulation to unannotated isoforms including a short form TNS3. We also find that the exon-intron structure of fusion transcripts depends on their genomic context, and we identify double-hop fusion transcripts that are transcribed from complex structural rearrangements. For example, a double-hop fusion results in aberrant expression of an endogenous retroviral gene, ERVFRD-1, which is normally expressed exclusively in placenta and is thought to protect fetus from maternal rejection; expression is elevated in several TCGA samples with ERVFRD-1 fusions. Our analyses provide direct evidence that full-length transcript sequencing of clinical samples can add to our understanding of cancer biology and genomics in general.


Asunto(s)
Neoplasias de la Mama/genética , Fusión Génica , Transcriptoma , Neoplasias de la Mama/metabolismo , Humanos , Isoformas de Proteínas/metabolismo , ARN/análisis , Tensinas/genética , Tensinas/metabolismo
9.
J Immunother Cancer ; 9(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34795004

RESUMEN

BACKGROUND: Patients with cancer benefit from treatment with immune checkpoint inhibitors (ICIs), and those with an inflamed tumor microenvironment (TME) and/or high tumor mutation burden (TMB), particularly, tend to respond to ICIs; however, some patients fail, whereas others acquire resistance after initial response despite the inflamed TME and/or high TMB. We assessed the detailed biological mechanisms of resistance to ICIs such as programmed death 1 and/or cytotoxic T-lymphocyte-associated protein 4 blockade therapies using clinical samples. METHODS: We established four pairs of autologous tumor cell lines and tumor-infiltrating lymphocytes (TILs) from patients with melanoma treated with ICIs. These tumor cell lines and TILs were subjected to comprehensive analyses and in vitro functional assays. We assessed tumor volume and TILs in vivo mouse models to validate identified mechanism. Furthermore, we analyzed additional clinical samples from another large melanoma cohort. RESULTS: Two patients were super-responders, and the others acquired resistance: the first patient had a non-inflamed TME and acquired resistance due to the loss of the beta-2 microglobulin gene, and the other acquired resistance despite having inflamed TME and extremely high TMB which are reportedly predictive biomarkers. Tumor cell line and paired TIL analyses showed high CD155, TIGIT ligand, and TIGIT expression in the tumor cell line and tumor-infiltrating T cells, respectively. TIGIT blockade or CD155-deletion activated T cells in a functional assay using an autologous cell line and paired TILs from this patient. CD155 expression increased in surviving tumor cells after coculturing with TILs from a responder, which suppressed TIGIT+ T-cell activation. Consistently, TIGIT blockade or CD155-deletion could aid in overcoming resistance to ICIs in vivo mouse models. In clinical samples, CD155 was related to resistance to ICIs in patients with melanoma with an inflamed TME, including both primary and acquired resistance. CONCLUSIONS: The TIGIT/CD155 axis mediates resistance to ICIs in patients with melanoma with an inflamed TME, promoting the development of TIGIT blockade therapies in such patients with cancer.


Asunto(s)
Inmunoterapia/métodos , Melanoma/tratamiento farmacológico , Receptores Inmunológicos/metabolismo , Receptores Virales/metabolismo , Anciano , Animales , Línea Celular Tumoral , Femenino , Humanos , Masculino , Ratones , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda