Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Genet ; 982019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31767816

RESUMEN

Seedling and adult plant (field) resistance to yellow rust in the durum wheat (Triticum turgidum ssp. durum) cross Kunduru-1149 x Cham-1 was characterized using a functionally-targeted DNA marker system, NBS-profiling. Chi-squared analysis indicated a four gene model conferring seedling yellow rust resistance against Puccinia striiformis f. sp. tritici isolate WYR85/22 (virulent on Yr2, Yr6, Yr7 and Yr9). Interval mapping located two QTL for yellow rust resistance on the long arm of chromosome 1B, while Kruskal-Wallis single marker regression identified a number of additional marker loci associated with seedling and/or adult plant, field resistance to yellow rust. These results suggested that much of the yellow rust resistance seen in the field may be due to seedling expressed resistance (R) genes. Characterization of the DNA sequence of three NBS marker loci indicated that all showed significant homology to functionally-characterized R-genes and resistance gene analogues (RGAs), with the greatest homology being NBS-LRR-type R-genes and RGAs from cereal species.


Asunto(s)
Resistencia a la Enfermedad/genética , Triticum/genética , Triticum/inmunología , Basidiomycota/patogenicidad , Mapeo Cromosómico , Genes de Plantas/genética , Marcadores Genéticos , Genoma de Planta , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo , Plantones/genética , Análisis de Secuencia , Transcriptoma , Triticum/microbiología
2.
G3 (Bethesda) ; 9(7): 2039-2049, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31217262

RESUMEN

Silver fir (Abies alba Mill.) is a keystone conifer of European montane forest ecosystems that has experienced large fluctuations in population size during during the Quaternary and, more recently, due to land-use change. To forecast the species' future distribution and survival, it is important to investigate the genetic basis of adaptation to environmental change, notably to extreme events. For this purpose, we here provide a first draft genome assembly and annotation of the silver fir genome, established through a community-based initiative. DNA obtained from haploid megagametophyte and diploid needle tissue was used to construct and sequence Illumina paired-end and mate-pair libraries, respectively, to high depth. The assembled A. alba genome sequence accounted for over 37 million scaffolds corresponding to 18.16 Gb, with a scaffold N50 of 14,051 bp. Despite the fragmented nature of the assembly, a total of 50,757 full-length genes were functionally annotated in the nuclear genome. The chloroplast genome was also assembled into a single scaffold (120,908 bp) that shows a high collinearity with both the A. koreana and A. sibirica complete chloroplast genomes. This first genome assembly of silver fir is an important genomic resource that is now publicly available in support of a new generation of research. By genome-enabling this important conifer, this resource will open the gate for new research and more precise genetic monitoring of European silver fir forests.


Asunto(s)
Abies/genética , Genoma de Planta , Genómica , Biología Computacional/métodos , Bases de Datos Genéticas , Tamaño del Genoma , Genoma del Cloroplasto , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Secuenciación Completa del Genoma
3.
Plant Physiol Biochem ; 115: 183-199, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28376411

RESUMEN

Drought is the major environmental problem limiting the productivity and survival of plant species. Here, previously identified three black poplar genotypes having contrasting response to drought were subjected to gradual soil water depletion in a pot trial to identify their physiological, morphological and antioxidation related adaptations. We also performed a microarray based transcriptome analyses on the leaves of genotypes by using Affymetrix poplar Genome Array containing 56,000 transcripts. Phenotypic analyses of each genotype confirmed their differential adaptations to drought that could be classified as drought escape, avoidance and tolerance. Comparative transcriptomic analysis indicated highly divergent gene expression patterns among the genotypes in response to drought and post drought re-watering (PDR). We identified 10641, 3824 and 9411 transcripts exclusively regulated in drought escape, avoidance and tolerant genotypes, respectively. The key genes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein folding, redox homeostasis, secondary metabolic process and cell wall component biogenesis, were affected by drought stresses in the leaves of these genotypes. Transcript isoforms showed increased expression specificity in the genes coding for bark storage proteins and small heat shock proteins in drought tolerant genotype. On the other hand, drought-avoiding genotype specifically induced the transcripts annotated to the genes functional in secondary metabolite production that linked to enhanced leaf water content and growth performance under drought stress. Transcriptome profiling of drought escape genotype indicated specific regulation of the genes functional in programmed cell death and leaf senescence. Specific upregulation of GTP cyclohydrolase II and transcription factors (WRKY and ERFs) in only this genotype were associated to ROS dependent signalling pathways and gene regulation network responsible in induction of many degrading enzymes acting on cell wall carbohydrates, fatty acids and proteins under drought stress. Our findings provide new insights into the transcriptome dynamics and components of regulatory network associated with drought adaptation strategies.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas/fisiología , Populus/metabolismo , Agua/metabolismo , Genotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Análisis por Matrices de Proteínas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda