Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Res ; 33(6): 421-433, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37085732

RESUMEN

The lung is the primary respiratory organ in human, in which the proximal airway and the distal alveoli are responsible for air conduction and gas exchange, respectively. However, the regulation of proximal-distal patterning at the embryonic stage of human lung development is largely unknown. Here we investigated the early lung development of human embryos at weeks 4-8 post fertilization (Carnegie stages 12-21) using single-cell RNA sequencing, and obtained a transcriptomic atlas of 169,686 cells. We observed discernible gene expression patterns of proximal and distal epithelia at week 4, upon the initiation of lung organogenesis. Moreover, we identified novel transcriptional regulators of the patterning of proximal (e.g., THRB and EGR3) and distal (e.g., ETV1 and SOX6) epithelia. Further dissection revealed various stromal cell populations, including an early-embryonic BDNF+ population, providing a proximal-distal patterning niche with spatial specificity. In addition, we elucidated the cell fate bifurcation and maturation of airway and vascular smooth muscle progenitor cells at the early stage of lung development. Together, our study expands the scope of human lung developmental biology at early embryonic stages. The discovery of intrinsic transcriptional regulators and novel niche providers deepens the understanding of epithelial proximal-distal patterning in human lung development, opening up new avenues for regenerative medicine.


Asunto(s)
Pulmón , Alveolos Pulmonares , Humanos , Pulmón/metabolismo , Diferenciación Celular/genética , Embrión de Mamíferos , Análisis de Secuencia de ARN
2.
Prog Neurobiol ; 231: 102530, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37739206

RESUMEN

Different dopaminergic (DA) neuronal subgroups exhibit distinct vulnerability to stress, while the underlying mechanisms are elusive. Here we report that the transient receptor potential melastatin 2 (TRPM2) channel is preferentially expressed in vulnerable DA neuronal subgroups, which correlates positively with aging in Parkinson's Disease (PD) patients. Overexpression of human TRPM2 in the DA neurons of C. elegans resulted in selective death of ADE but not CEP neurons in aged worms. Mechanistically, TRPM2 activation mediates FZO-1/CED-9-dependent mitochondrial hyperfusion and mitochondrial permeability transition (MPT), leading to ADE death. In mice, TRPM2 knockout reduced vulnerable substantia nigra pars compacta (SNc) DA neuronal death induced by stress. Moreover, the TRPM2-mediated vulnerable DA neuronal death pathway is conserved from C. elegans to toxin-treated mice model and PD patient iPSC-derived DA neurons. The vulnerable SNc DA neuronal loss is the major symptom and cause of PD, and therefore the TRPM2-mediated pathway serves as a promising therapeutic target against PD.


Asunto(s)
Proteínas de Caenorhabditis elegans , Enfermedad de Parkinson , Canales Catiónicos TRPM , Humanos , Ratones , Animales , Anciano , Calcio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPM/metabolismo , Caenorhabditis elegans/metabolismo , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Parkinson/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo
3.
Cell Biosci ; 12(1): 131, 2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-35965317

RESUMEN

BACKGROUND: The mammalian target of rapamycin (mTOR) plays a critical role in controlling cellular homeostasis, and its dysregulation has been implicated in Alzheimer's disease (AD). Presenilin-1 (PS1) mutations account for the most common causes of familial Alzheimer's disease (FAD); however, whether PS1 mutation causes mTOR dysregulation in human neurons remains a key unresolved issue. METHODS: We generated heterozygotes and homozygotes of PS1 F105C knock-in mutation in human induced pluripotent stem cells (iPSCs) via CRISPR/Cas9/piggyback-based gene editing and differentiated them into human neurons. Secreted Aß and tau accumulation were determined by ELISA assay, immunofluorescence staining, and western blotting analysis. mTOR signaling was evaluated by western blotting analysis, immunofluorescence staining, and co-immunoprecipitation. Autophagy/lysosome activities were determined by LC3-based assay, LysoTracker Red staining, and DQ-Red BSA staining. RESULTS: Through comparison among these isogenic neurons, PS1 F105C mutant neurons exhibited elevated Aß and tau accumulation. In addition, we found that the response of mTORC1 to starvation decreases in PS1 F105C mutant neurons. The Akt/mTORC1/p70S6K signaling pathway remained active upon EBSS starvation, leading to the co-localization of the vast majority of mTOR with lysosomes. Consistently, PS1 F105C neurons displayed a significant decline in starvation-induced autophagy. Notably, Torin1, a mTOR inhibitor, could efficiently reduce prominent tau pathology that occurred in PS1 F105C neurons. CONCLUSION: We demonstrate that Chinese PS1 F105C mutation causes dysregulation of mTORC1 signaling, contributing to tau accumulation in human neurons. This study on inherited FAD PS1 mutation provides unprecedented insights into our understanding of the molecular mechanisms of AD. It supports that pharmaceutical blocking of mTOR is a promising therapeutic strategy for the treatment of AD.

4.
Aging Dis ; 12(1): 223-246, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33532138

RESUMEN

Parkinson's disease (PD) ranks second among the most common neurodegenerative diseases, characterized by progressive and selective loss of dopaminergic neurons. Various cross-species preclinical models, including cellular models and animal models, have been established through the decades to study the etiology and mechanism of the disease from cell lines to nonhuman primates. These models are aimed at developing effective therapeutic strategies for the disease. None of the current models can replicate all major pathological and clinical phenotypes of PD. Selection of the model for PD largely relies on our interest of study. In this review, we systemically summarized experimental PD models, including cellular and animal models used in preclinical studies, to understand the pathogenesis of PD. This review is intended to provide current knowledge about the application of these different PD models, with focus on their strengths and limitations with respect to their contributions to the assessment of the molecular pathobiology of PD and identification of the therapeutic strategies for the disease.

5.
Cell Death Dis ; 11(2): 130, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32071291

RESUMEN

The endoplasmic reticulum (ER)-stress-induced cascade events are implicated in Parkinson's disease (PD). The discovery of drug candidates to protect dopaminergic (DA) neurons from ER-stress-induced oxidative damage is important to resolve the pathological aspects of PD and modify its progress. In this study, we found that a recently identified unfolded protein response (UPR) modulator, azoramide, showed protective effects on patient induced pluripotent stem cells-derived midbrain DA neurons with the homozygous phospholipase A2 group 6 (PLA2G6) D331Y mutant. A series of PD-related cascade events such as ER stress, abnormal calcium homeostasis, mitochondrial dysfunction, increase of reactive oxygen species, and apoptosis were observed in PLA2G6 D331Y mutant DA neurons, whereas azoramide significantly protected PLA2G6 D331Y mutant DA neurons against these events. The beneficial effects of azoramide were abolished by treatment with a cAMP-response element binding protein (CREB) inhibitor. Our results suggest that azoramide is a potential neuroprotectant against DA neuron damage via restoring ER function and the CREB signaling.


Asunto(s)
Amidas/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fosfolipasas A2 Grupo VI/genética , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Mutación , Células-Madre Neurales/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Tiazoles/farmacología , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Señalización del Calcio , Células Cultivadas , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Especies Reactivas de Oxígeno/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos
6.
World J Stem Cells ; 11(9): 634-649, 2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31616540

RESUMEN

Parkinson's disease (PD) is an age-related neurodegenerative disease caused by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. As DA neurons degenerate, PD patients gradually lose their ability of movement. To date no effective therapies are available for the treatment of PD and its pathogenesis remains unknown. Experimental models that appropriately mimic the development of PD are certainly needed for gaining mechanistic insights into PD pathogenesis and identifying new therapeutic targets. Human induced pluripotent stem cells (iPSCs) could provide a promising model for fundamental research and drug screening. In this review, we summarize various iPSCs-based PD models either derived from PD patients through reprogramming technology or established by gene-editing technology, and the promising application of iPSC-based PD models for mechanistic studies and drug testing.

7.
Aging Dis ; 10(5): 1037-1048, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31595201

RESUMEN

Induced pluripotent stem cells (iPSCs)-derived dopaminergic neurons might be reset back to the fetal state due to reprogramming. Thus, it is a compelling challenge to reliably and efficiently induce disease phenotypes of iPSCs-derived dopaminergic neurons to model late-onset Parkinson's disease (PD). Here, we applied a small molecule, hydroxyurea (HU), to promote the manifestation of disease relevant phenotypes in iPSCs-based modeling of PD. We established two iPS cell lines derived from two sporadic PD patients. Both patients-iPSCs-derived dopaminergic neurons did not display PD relevant phenotypes after 6 weeks culture. HU treatment remarkably induced ER stress on patients-iPSCs-derived dopaminergic neurons. Moreover, HU treatment significantly reduced neurite outgrowth, decreased the expression of p-AKT and its downstream targets (p-4EBP1 and p-ULK1), and increased the expression level of cleaved-Caspase 3 in patients-iPSCs-derived dopaminergic neurons. The findings of the present study suggest that HU administration could be a convenient and reliable approach to induce disease relevant phenotypes in PD-iPSCs-based models, facilitating to study disease mechanisms and test drug effects.

8.
Mol Neurobiol ; 55(3): 2645-2652, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28421538

RESUMEN

Nitric oxide (NO), a free radical gas, acts as a neurotransmitter or neuromodulator in the central nervous system (CNS). It has been widely explored as a mediator of neuroinflammation, neuronal damages, and neurodegeneration at its pathological levels. Recently, increasing evidence suggests that NO plays key roles in mediating adult neurogenesis, the process of neural stem cells (NSCs) to generate newborn neurons for replacing damaged neurons or maintaining the function of the brain. NO synthase (NOS) is a major enzyme catalyzing the generation of NO in the brain. Recent studies indicate that three homologous NOS isoforms are involved in the proliferation of NSCs and neurogenesis. Therefore, the impact of NOS isoforms on NSC functions needs to be elucidated. Here, we summarize the studies on the role of NO and NOS with different isoforms in NSC proliferation and neurogenesis with the focus on introducing action mechanisms involved in the regulation of NSC function. This growing research area provides the new insight into controlling NSC function via regulating NO microenvironment in the brain. It also provides the evidence on targeting NOS for the treatment of brain diseases.


Asunto(s)
Encéfalo/enzimología , Neurogénesis/fisiología , Óxido Nítrico Sintasa/fisiología , Animales , Encéfalo/citología , Humanos , Isoenzimas/fisiología , Células-Madre Neurales/enzimología , Óxido Nítrico Sintasa/química
9.
Cell Death Dis ; 9(9): 879, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158533

RESUMEN

Autophagy impairment is commonly implicated in the pathological characteristic of Alzheimer's disease (AD). Presenilin 1 (PS1) expression in human brain gradually decreases with age and its mutations account for the most common cases of early-onset familial Alzheimer's disease (FAD). The dominant autophagy phenotypes occur in PS1-knockout and PS1 mutant neurons; it is still unknown whether PS1 deficiency causes serious autophagy impairment in neural stem cells (NSCs). Herein, we generated the heterozygote and homozygote of PS1 knockout in human induced pluripotent stem cells (iPSCs) via CRISPR/Cas9-based gene editing and differentiated them into human NSCs. In these human PS1-deficient NSCs, reduced autophagosome formation and downregulated expression of autophagy-lysosome pathway (ALP)-related mRNAs, as well as proteins were observed. Mechanistically, ERK/CREB inhibition and GSK3ß activation had key roles in reducing TFEB expression in PS1-knockout NSCs. Pharmacological inhibition of GSK3ß upregulated the expression of TFEB and ALP-related proteins in PS1-knockout NSCs, whereas this effect could be blocked by CREB inhibition. These findings demonstrate that PS1 deficiency causes autophagy suppression in human NSCs via downregulating ERK/CREB signaling.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Autofagia/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Presenilina-1/deficiencia , Autofagosomas/metabolismo , Autofagosomas/fisiología , Encéfalo/metabolismo , Encéfalo/fisiología , Sistemas CRISPR-Cas/fisiología , Células Cultivadas , Regulación hacia Abajo/fisiología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Lisosomas/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Mutación/fisiología , Células-Madre Neurales/fisiología , ARN Mensajero/metabolismo , Transducción de Señal/fisiología , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda