Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Environ Sci Technol ; 58(3): 1669-1679, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38183301

RESUMEN

Peatlands are known sinks for arsenic (As). In the present study, seasonal As mobilization was observed in an acidic, minerotrophic peatland (called Lehstenbach) in late summer, accompanied by a peak in dissolved sulfide (S(-II)). Arsenic speciation revealed the lowest seasonal porewater concentrations of arsenite and arsenate, likely due to As(III)-S-bridging to natural organic matter. Arsenic mobilization was driven by the formation of arsenite-S(-II) colloids and formation of methylthiolated arsenates (up to 59% of the sum of As species) and to a minor extent also of inorganic thioarsenates (6%-30%) and oxymethylated arsenates (5%-24%). Sorption experiments using a purified model peat, the Lehstenbach peat, natural (to mimic winter conditions) and reacted with S(-II) (to mimic late summer conditions) at acidic and neutral pH confirmed low sorption of methylthiolated arsenates. At acidic pH and in the presence of S(-II), oxymethylated arsenates were completely thiolated. This methylthiolation decreased As sorption up to 10 and 20 times compared with oxymethylated arsenates and arsenite, respectively. At neutral pH, thiolation of monomethylated arsenates was incomplete, and As could be partially retained as oxymethylated arsenates. Dimethylated arsenate was still fully thiolated and highly mobile. Misidentification of methylthiolated arsenates as oxymethylated arsenates might explain previous contradictory reports of methylation decreasing or increasing As mobility.


Asunto(s)
Arsénico , Arsenitos , Arseniatos , Estaciones del Año , Suelo
2.
Environ Sci Technol ; 57(51): 21846-21854, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38093687

RESUMEN

Inorganic and methylated thioarsenates have recently been reported to form in paddy soil pore waters and accumulate in rice grains. Among them, dimethylmonothioarsenate (DMMTA) is particularly relevant because of its high cytotoxicity and potential misidentification as nonregulated dimethylarsenate (DMA). Studying DMMTA uptake and flag leaf, grain, and husk accumulation in rice plants during grain filling, substantial dethiolation to DMA was observed with only 8.0 ± 0.1, 9.1 ± 0.6, and 1.4 ± 0.2% DMMTA remaining, respectively. More surprisingly, similar shares of DMMTA were observed in control experiments with DMA, indicating in planta DMA thiolation. Exposure of different rice seedling varieties to not only DMA but also to arsenite and monomethylarsenate (MMA) revealed in planta thiolation as a common process in rice. Up to 35 ± 7% DMA thiolation was further observed in the shoots and roots of the model plant Arabidopsis thaliana. Parameters determining the ratio and kinetics of thiolation versus dethiolation are unknown, yet, but less DMA thiolation in glutathione-deficient mutants compared to wild-type plants suggested glutathione concentration as one potential parameter. Our results demonstrate that pore water is not the only source for thioarsenates in rice grains and that especially the currently nonregulated DMA needs to be monitored as a potential precursor of DMMTA formation inside rice plants.


Asunto(s)
Arabidopsis , Arsénico , Oryza , Contaminantes del Suelo , Ácido Cacodílico , Glutatión
3.
Environ Sci Technol ; 56(14): 10072-10083, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35759640

RESUMEN

Arsenic is one of the most relevant environmental pollutants and human health threats. Several arsenic species occur in soil pore waters. Recently, it was discovered that these include inorganic and organic thioarsenates. Among the latter, dimethylmonothioarsenate (DMMTA) is of particular concern because in mammalian cells, its toxicity was found to exceed even that of arsenite. We investigated DMMTA toxicity for plants in experiments with Arabidopsis thaliana and indeed observed stronger growth inhibition than with arsenite. DMMTA caused a specific, localized deformation of root epidermal cells. Toxicity mechanisms apparently differ from those of arsenite since no accumulation of reactive oxygen species was observed in DMMTA-exposed root tips. Also, there was no contribution of the phytochelatin pathway to the DMMTA detoxification as indicated by exposure experiments with respective mutants and thiol profiling. RNA-seq analysis found strong transcriptome changes dominated by stress-responsive genes. DMMTA was taken up more efficiently than the methylated oxyarsenate dimethylarsenate and highly mobile within plants as revealed by speciation analysis. Shoots showed clear indications of DMMTA toxicity such as anthocyanin accumulation and a decrease in chlorophyll and carotenoid levels. The toxicity and efficient translocation of DMMTA within plants raise important food safety issues.


Asunto(s)
Arabidopsis , Arsénico , Arsenitos , Arabidopsis/genética , Arabidopsis/metabolismo , Arsénico/metabolismo , Arsénico/toxicidad , Ácido Cacodílico , Humanos , Fitoquelatinas , Plantas/metabolismo
4.
Environ Sci Technol ; 54(11): 6682-6692, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32347724

RESUMEN

Reduced sulfur (S) has a contrasting role in the fate of arsenic (As) in peatlands. Sulfur bridges provide efficient binding of As to organic carbon (C), but the formation of aqueous As-S species, so-called thioarsenates, leads to a low to no sorption tendency to organic C functional groups. Here, we studied how pH changes the role of reduced S in desorption and retention of presorbed As in model peat. Control desorption experiments without S addition revealed that As was mobilized, predominantly as arsenite, in all treatments with relative mobilization increasing with pH (4.5 < 7.0 < 8.5). Addition of sulfide or polysulfide caused substantial As retention at acidic conditions but significantly enhanced As desorption compared to controls at neutral to alkaline pH. Thioarsenates dominated As speciation at pH 7.0 and 8.5 (maximum, 79%) and remained in solution without (re)sorption to peat. Predominance of arsenite in control experiments and no evidence of surface-bound thioarsenates at pH 7.0 suggest mobilization to proceed via arsenite desorption, reaction with dissolved or surface-bound reduced S, and formation of thioarsenates. Our results suggest that natural or management-related increases in pH or increases in reduced S in near-neutral pH environments can turn organic matter from an As sink into a source.


Asunto(s)
Arsénico , Arseniatos , Concentración de Iones de Hidrógeno , Suelo , Azufre
5.
Environ Sci Technol ; 54(7): 4295-4304, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32157885

RESUMEN

Geothermal waters often are enriched in trace metal(loid)s, such as arsenic, antimony, molybdenum, and tungsten. The presence of sulfide can lead to the formation of thiolated anions; however, their contributions to total element concentrations typically remain unknown because nonsuitable sample stabilization and chromatographic separation methods convert them to oxyanions. Here, the concurrent widespread occurrence of thioarsenates, thiomolybdates, thiotungstates, and thioantimonates, in sulfide-rich hot springs from Yellowstone National Park and Iceland is shown. More thiolation was generally observed at higher molar sulfide to metal(loid) excess (Iceland > Yellowstone). Thioarsenates were the most prominent and ubiquitous thiolated species, with trithioarsenate typically dominating arsenic speciation. In some Icelandic hot springs, arsenic was nearly quantitatively thiolated. Also, for molybdenum, thioanions dominated over oxyanions in many Icelandic hot springs. For tungsten and antimony, oxyanions typically dominated and thioanions were observed less frequently, but still contributed up to a few tens of percent in some springs. This order of relative abundance (thioarsenates > thiomolybdates > thiotungstates ≈ thioantimonates) was also observed when looking at processes triggering transformation of thioanions such as mixing with non-geothermal waters or H2S degassing and oxidation with increasing distance from a discharge. Even though to different extents, thiolation contributed substantially to speciation of all four elements studied, indicating that their analysis is required when studying geothermal systems.


Asunto(s)
Arsénico , Manantiales de Aguas Termales , Concentración de Iones de Hidrógeno , Islandia , Parques Recreativos
6.
Environ Sci Technol ; 53(23): 13666-13674, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31675232

RESUMEN

Iron (hydr)oxide coating at rice roots, so-called iron plaque (IP), is often an important barrier for uptake of inorganic oxyarsenic species and their accumulation in rice grains. Sorption of methylated thioarsenates, which can co-exist with inorganic and methylated oxyarsenates in paddy soils, was not studied yet, even though these toxic species were detected in xylem and grains of rice plants before. Hydroponic experiments at pH 6.5 with 20 day-old rice plants showed lower net arsenic enrichment in IP for plants exposed to monomethylthioarsenate (MMMTA) compared to monomethylarsenate (MMA) and no enrichment for dimethylmonothioarsenate (DMMTA). Goethite was the dominant mineral phase in our IP. Sorption experiments with synthesized goethite and ferrihydrite revealed a 30-times-higher sorption capacity for MMMTA to amorphous ferrihydrite than to crystalline goethite, comparable to methylated oxyarsenates. No evidence for direct MMMTA binding was found. Instead, we postulate that MMMTA transformation to MMA is a prerequisite for removal. DMMTA showed very little sorption, even to amorphous ferrihydrite, which is in line with a lack of direct binding and reported slow transformation to dimethylarsenate. Our study implies that IP is no effective barrier for methylated thioarsenates and that especially DMMTA is very mobile with a high risk of uptake in rice plants.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Ácido Cacodílico , Hierro , Raíces de Plantas
7.
Environ Sci Technol ; 53(10): 5787-5796, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31033272

RESUMEN

Methylated and inorganic thioarsenates have recently been reported from paddy fields besides the better-known oxyarsenates. Methylated thioarsenates are highly toxic for humans, yet their uptake, transformation, and translocation in rice plants is unknown. Here, hydroponic experiments with 20 day old rice plants showed that monomethylmonothioarsenate (MMMTA), dimethylmonothioarsenate (DMMTA), and monothioarsenate (MTA) were taken up by rice roots and could be detected in the xylem. Total arsenic (As) translocation from roots to shoots was higher for plants exposed to DMMTA, MTA, and dimethylarsenate (DMAV) compared to MMMTA and monomethylarsenate (MMAV). All thioarsenates were partially transformed in the presence of rice roots, but processes and extents differed. MMMTA was subject to abiotic oxidation and largely dethiolated to MMAV already outside the plant, probably due to root oxygen loss. DMMTA and MTA were not oxidized abiotically. Crude protein extracts showed rapid enzymatic reduction for MTA but not for DMMTA. Our study implies that DMMTA has the highest potential to contribute to total As accumulation in grains either as DMAV or partially as DMMTA. DMMTA has once been detected in rice grains using enzymatic extraction. By routine acid extraction, DMMTA is determined as DMAV and thus escapes regulation despite its toxicity.


Asunto(s)
Arsénico , Arsenicales , Oryza , Transporte Biológico , Ácido Cacodílico , Humanos
8.
Environ Sci Technol ; 52(16): 9154-9161, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30024151

RESUMEN

Thioarsenates form under sulfur-reducing conditions in paddy soil pore waters. Sulfur fertilization, recently promoted for decreasing total arsenic (As) grain concentrations, could enhance their formation. Yet, to date, thioarsenate toxicity, uptake, transformation, and translocation in rice are unknown. Our growth inhibition experiments showed that the toxicity of monothioarsenate (MTA) was similar to that of arsenate but lower than that of arsenite. Higher toxicity of MTA with lower phosphate availability might imply uptake through phosphate transporters similar to arsenate. To demonstrate direct uptake of MTA by rice plants, a species-preserving extraction method for plant samples was developed. When plants were exposed to 10 µM MTA for 72 h, up to 19% and 4% of total As accumulated in roots and shoots, respectively, was MTA. Monothioarsenate was detected in xylem sap and root exudates, and its reduction to arsenite in rice roots and shoots was shown. Total As uptake was lower upon exposure to MTA compared to arsenate, but root to shoot translocation was higher, resulting in comparable As shoot concentrations. Thus, before promoting sulfur fertilization, uptake and detoxifying mechanisms of thioarsenates as well as potential contribution to grain As accumulation need to be better understood.


Asunto(s)
Arsénico , Oryza , Transporte Biológico , Raíces de Plantas , Suelo
9.
Anal Chem ; 89(5): 3123-3129, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28192962

RESUMEN

Molybdenum 98Mo/95Mo isotope ratios are a sediment paleo proxy for the redox state of the ancient ocean. Under sulfidic conditions, no fractionation between seawater and sediment should be observed if molybdate (MoO42-) is quantitatively transformed to tetrathiomolybdate (MoS42-) and precipitated. However, quantum mechanical calculations previously suggested that incomplete sulfidation could be associated with substantial fractionation. To experimentally confirm isotope fractionation in thiomolybdates, a new approach for determination of isotope ratios of individual thiomolybdate species was developed that uses chromatography (HPLC-UV) to separate individual thiomolybdates, collecting each peak and analyzing isotope ratios with multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). Using commercially available MoO42- and MoS42- standards, the method was evaluated and excellent reproducibility and accuracy were obtained. For species with longer retention times, complete chromatographic peaks had to be collected to avoid isotope fractionation within peaks. Isotope fractionation during formation of thiomolybdates could be experimentally proven for the first time in the reaction of MoO42- with 20-fold or 50-fold excess of sulfide. The previously calculated isotope fractionation for MoS42- was confirmed, and the result for MoO2S22- was in the predicted range. Isotopic fractionation during MoS42- transformation with pressurized air was dominated by kinetic fractionation. Further optimization and online-coupling of the HPLC-MC-ICPMS approach for determination of low concentrations in natural samples will greatly help to obtain more accurate species-selective isotope information.

10.
Sci Total Environ ; 869: 161712, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36682547

RESUMEN

Rice is planted as a rotation crop in the sugarcane-dominant Everglades Agricultural Area (EAA) in southern Florida. The Histosols in this area are unlike other mineral soils used to grow rice due to the high organic content and land subsidence caused by rapid oxidation of organic matter upon drainage. It remains unknown if such soils pose a risk of arsenic (As) or cadmium (Cd) mobilization and uptake into rice grain. Both As and Cd are carcinogenic trace elements of concern in rice, and it is important to understand their soil-plant transfer into rice, a staple food of global importance. Here, a mesocosm pot study was conducted using two thicknesses of local soil, deep (D, 50 cm) and shallow (S, 25 cm), under three water managements, conventional flooding (FL), low water table (LWT), and alternating wetting and drying (AWD). Rice was grown to maturity and plant levels of As and Cd were determined. Regardless of treatments, rice grown in these Florida Histolsols has very low Cd concentrations in polished grain (1.5-5.6 µg kg-1) and relatively low total As (35-150 µg kg-1) and inorganic As (35-87 µg kg-1) concentrations in polished grain, which are below regulatory limits. This may be due to the low soil As and Cd levels, high soil cation exchange capacity due to high soil organic matter content, and slightly alkaline soil pH. Grain As was significantly affected by water management (AWD < FL = LWT) and its interaction effect with soil thickness (AWD-D ≤ AWD-S ≤ FL-D = LWT-S = LWT-D ≤ FL-S), resulting in as much as 62 % difference among treatments. Grain Cd was significantly affected by water management (AWD > FL > LWT) without any soil thickness impact. In conclusion, even though water management has more of an impact on rice As and Cd than soil thickness, the low concentrations of As and Cd in rice pose little health risk for consumers.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Cadmio/análisis , Arsénico/análisis , Agua/análisis , Suelo/química , Oryza/química , Florida , Abastecimiento de Agua , Contaminantes del Suelo/análisis
11.
Sci Total Environ ; 873: 162354, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36822435

RESUMEN

Ría of Huelva, located in southwestern Spain, is a highly metal(loid)-contaminated estuary system where sediments are exceeding action limits in an increasing order for Cd, Zn, Pb, Cu, and As. With a predicted sea level rise over the next 50 years, the estuary will be subject to flooding with brackish water or seawater. To evaluate the risk of metal(loid) mobilization under future climate scenarios, different locations along the estuary were sampled at different depths. Samples were flooded with river water, brackish water, and seawater under different short- and long-term laboratory setups. Potential metal(loid) mobilization showed that water quality standards for As, Pb, Zn, Ni, Cu, and Cd could be exceeded upon seawater flooding. However, metal(loid) mobilization was not predictable solely based on sediment loads. The driving factors for cation and anion mobility were identified to be mainly pH under low salinity and competitive desorption under high salinity conditions. Further drivers such as wave movement or labile C input in C-limited systems were found to enhance metal(loid) mobilization. Long-term flooding of intact sediment cores revealed that sea level rise will have different effects on the estuary system depending on duration of flooding. Short-term flooding in the near future will first affect alkaline sediments and enhance currently low cation mobilization, while anion mobilization due to reductive Fe dissolution will remain high. Once acidic sediments further inland are flooded with seawater, highest contaminant mobilization can be expected as high salinity will further enhance already high cation mobilization under acidic pH. Long-term flooding with seawater will neutralize the sediment pH and limit cation mobilization compared to acidic pH. However, the contaminant load stored in the estuary is so high that, extrapolating data obtained, mobilization could last for >1000 years, e.g. for As, Pb, and Al.

12.
Sci Total Environ ; 827: 154155, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35231514

RESUMEN

Arsenic is common toxic contaminant, but tracking its mobility through submerged soils is difficult because microscale processes dictate its speciation and affinity to minerals. Analyses on environmental dissolved arsenic (As) species such as arsenate and arsenite currently require highly specialized equipment and large sample volumes. In an effort to unravel arsenic dynamics in sedimentary porewater, a novel, highly sensitive, and field-usable colorimetric assay requiring 100 µL of sample was developed. Two complementary protocols are presented, suitable for sub-micromolar and micromolar ranges. Phosphate is a main interfering substance, but can be separated by measuring phosphate and arsenate under two different acidities. Arsenite is assessed by oxidation of arsenite to arsenate in the low-acidity reagent. Optimization of the protocol and spectral analyses resulted in elimination of various interferences (silicate, iron, sulfide, sulfate), and the assay is applicable across a wide range of salinities and porewater compositions. The new assay was used to study As mobilization processes through the soil of a contaminated brook. Water column sources of arsenic were limited to a modest input by a groundwater source along the flow path. In one of the sites, the arsenite and arsenate porewater profiles showed active iron-driven As redox cycling in the soil, which may play a role in arsenic mobilization and releases arsenite and arsenate into the brook water column. Low arsenic concentrations downstream from the source sites indicated arsenic retention by soil and dilution with additional sources of water. Arsenic is thus retained by the Bossegraben before it merges with larger rivers.


Asunto(s)
Arsénico , Arsenitos , Arseniatos/análisis , Arsénico/análisis , Arsenitos/análisis , Colorimetría , Hierro/análisis , Fosfatos/análisis , Suelo , Agua/análisis
13.
J Agric Food Chem ; 70(31): 9610-9618, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35901520

RESUMEN

Arsenic (As) occurrence in rice is a serious human health threat. Worldwide, regulations typically limit only carcinogenic inorganic As, but not possibly carcinogenic dimethylated oxyarsenate (DMA). However, there is emerging evidence that "DMA", determined by routine acid-based extraction and analysis, hides a substantial share of dimethylated thioarsenates that have similar or higher cytotoxicities than arsenite. Risk assessments characterizing the in vivo toxicity of rice-derived dimethylated thioarsenates are urgently needed. In the meantime, either more sophisticated methods based on enzymatic extraction and separation of dimethylated oxy- and thioarsenates have to become mandatory or total As should be regulated.


Asunto(s)
Arsénico , Arsenicales , Oryza , Arsénico/toxicidad , Ácido Cacodílico/toxicidad , Carcinógenos/toxicidad , Humanos
14.
J Agric Food Chem ; 69(7): 2287-2294, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33566616

RESUMEN

Inorganic and methylated thioarsenates have recently been reported to contribute substantially to arsenic (As) speciation in paddy-soil pore waters. Here, we show that thioarsenates can also accumulate in rice grains and rice products. For their detection, a method was developed using a pepsin-pancreatin enzymatic extraction followed by chromatographic separation at pH 13. From 54 analyzed commercial samples, including white, parboiled and husked rice, puffed rice cakes, and rice flakes, 50 contained dimethylmonothioarsenate (DMMTA) (maximum 25.6 µg kg-1), 18 monothioarsenate (MTA) (maximum 5.6 µg kg-1), 14 dimethyldithioarsenate (DMDTA) (maximum 2.8 µg kg-1), and 5 dithioarsenate (DTA) (maximum 2.3 µg kg-1). Additionally, we show that the commonly used nitric acid extraction transforms MTA to arsenite and DMMTA and DMDTA to dimethylarsenate (DMA). Current food guidelines do not require an analysis of thioarsenates in rice and only limit the contents of inorganic oxyarsenic species (including acid-extraction-transformed MTA), but not DMA (including acid-extraction-transformed DMMTA and DMDTA).


Asunto(s)
Arsénico , Oryza , Ácido Cacodílico , Estructuras de las Plantas , Suelo
15.
Sci Total Environ ; 758: 143689, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33279195

RESUMEN

Peatlands, used for purification of mining waste waters, have shown efficient solid-phase sequestration of contaminants such as arsenic (As). However, contaminant re-mobilization may occur related to management changes or chemical alteration of original peatland conditions. For a treatment peatland in Finnish Lapland, we here confirm efficient As retention in near-surface peat layers close to the mining waste water inflow, likely due to binding to FeIII-phases. Seven years into operation of the treatment peatland, there appears to be further retention potential, as large areas downstream still had solid-phase As concentrations at background levels. However, via depth-resolved pore water analysis we observed a hotspot 170 m from the inflow at 10-50 cm depth, where As pore water concentrations exceeded input concentrations by a factor of 20, indicating substantial As re-mobilization. At the same spot, a peak of reduced sulfur (S) species was found. Arsenic species detected were arsenite and up to 26% methylated oxyarsenates, 15% methylated and 7.9% inorganic thioarsenates. We postulate that As mobilization is a result of short-term re-equilibration to a changed inflow chemistry after installation of a process water treatment plant and a long-term consequence of changing pore water pH from acidic to near-neutral, releasing reduced S and As. We infer that the co-occurrence of reduced S and As leads to formation of methylated and/or thiolated As species with known low sorption affinity, thereby further enhancing As mobility. Laboratory incubation studies with two peat cores confirmed a high S-induced As mobilization potential, especially when As-Fe-rich, oxic surface layers were incubated anoxically at near-neutral pH. Highest risk of As re-mobilization from this treatment peatland is expected in a scenario in which mining waste water inflow has stopped but the peatland remains flooded, and near-surface layers transition from oxic to anoxic conditions.

16.
Nat Commun ; 10(1): 4985, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676771

RESUMEN

Projections of global rice yields account for climate change. They do not, however, consider the coupled stresses of impending climate change and arsenic in paddy soils. Here, we show in a greenhouse study that future conditions cause a greater proportion of pore-water arsenite, the more toxic form of arsenic, in the rhizosphere of Californian Oryza sativa L. variety M206, grown on Californian paddy soil. As a result, grain yields decrease by 39% compared to yields at today's arsenic soil concentrations. In addition, future climatic conditions cause a nearly twofold increase of grain inorganic arsenic concentrations. Our findings indicate that climate-induced changes in soil arsenic behaviour and plant response will lead to currently unforeseen losses in rice grain productivity and quality. Pursuing rice varieties and crop management practices that alleviate the coupled stresses of soil arsenic and change in climatic factors are needed to overcome the currently impending food crisis.


Asunto(s)
Arsénico/análisis , Clima , Grano Comestible/crecimiento & desarrollo , Oryza/crecimiento & desarrollo , Suelo/química , Estrés Fisiológico/fisiología , Rizosfera , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda