Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(2 Pt 2): 026502, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16196728

RESUMEN

The Dirac-Lorentz equation describes the dynamics of a classical point charge in an electromagnetic field, accounting for radiative effects in a manifestly covariant and gauge-invariant manner. The validity of this equation is assessed by direct comparison between the Dirac-Lorentz dynamics of an electron subjected to a plane wave in vacuum and the well-known recoil associated with Compton scattering. In the small recoil limit, the classical Dirac-Lorentz is shown to yield the correct momentum transfer. For larger values of the recoil, the quantum scale appears explicitly, and the classical Dirac-Lorentz equation does not properly model this situation, as shown by deriving an exact analytical solution for a monochromatic plane wave of wave number k0 to any order in k0r0, where r0 is the classical electron radius.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(1 Pt 2): 016501, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11461420

RESUMEN

A complete, three-dimensional theory of Compton scattering is described, which fully takes into account the effects of the electron beam emittance and energy spread upon the scattered x-ray spectral brightness. The radiation scattered by an electron subjected to an arbitrary electromagnetic field distribution in vacuum is first derived in the linear regime, and in the absence of radiative corrections; it is found that each vacuum eigenmode gives rise to a single Doppler-shifted classical dipole excitation. This formalism is then applied to Compton scattering in a three-dimensional laser focus, and yields a complete description of the influence of the electron beam phase-space topology on the x-ray spectral brightness; analytical expressions including the effects of emittance and energy spread are also obtained in the one-dimensional limit. Within this framework, the x-ray brightness generated by a 25 MeV electron beam is modeled, fully taking into account the beam emittance and energy spread, as well as the three-dimensional nature of the laser focus; its application to x-ray protein crystallography is outlined. Finally, coherence, harmonics, and radiative corrections are also briefly discussed.

3.
Phys Rev Lett ; 102(19): 192501, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19518948

RESUMEN

The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work, we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for 264Fm, 272Ds, ;{278}112, ;{292}114, and ;{312}124. For nuclei around ;{278}112 produced in "cold-fusion" reactions, we predict a more rapid decrease of fission barriers with excitation energy as compared to the nuclei around ;{292}114 synthesized in "hot-fusion" experiments. This is explained in terms of the difference between the ground-state and saddle-point temperatures. The effect of the particle gas is found to be negligible in the range of temperatures studied.

4.
Artículo en Inglés | MEDLINE | ID: mdl-11138165

RESUMEN

The physics of radiation reaction for a point charge is discussed within the context of classical electrodynamics. The fundamental equations of classical electrodynamics are first symmetrized to include magnetic charges: a double four-potential formalism is introduced, in terms of which the field tensor and its dual are employed to symmetrize Maxwell's equations and the Lorentz force equation in covariant form. Within this framework, the symmetrized Dirac-Lorentz equation is derived, including radiation reaction (self-force) for a particle possessing both electric and magnetic charge. The connection with electromagnetic duality is outlined, and an in-depth discussion of nonlocal four-momentum conservation for the wave-particle system is given.

5.
Artículo en Inglés | MEDLINE | ID: mdl-11969838

RESUMEN

The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapolation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be accelerated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell's equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the far-field region, where the field distribution closely approximates that of a plane wave, we recover the Lawson-Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain with wave-front curvature and wave amplitude is studied systematically.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda