Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Neuroscience ; 115(3): 951-60, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12435432

RESUMEN

Fe65 is a multimodular adaptor protein expressed mainly in the nervous system. Fe65 binds to the Alzheimer's disease amyloid precursor protein (APP) and the interaction is mediated via a phosphotyrosine binding domain in Fe65 and the carboxy-terminal cytoplasmic domain of APP. Fe65 modulates trafficking and processing of APP, including production of the beta-amyloid peptide that is believed to be central to the pathogenesis of Alzheimer's disease. Fe65 also facilitates translocation of a carboxy-terminal fragment of APP to the nucleus and is required for APP-mediated transcription events. In addition, Fe65 functions in regulation of the actin cytoskeleton and cell movement. Here we report the distribution profile of Fe65 immunoreactivity in adult mouse brain. Fe65 expression was found to be widespread in neurones in adult brain. The areas of highest expression included regions of the hippocampus in which the earliest abnormalities of Alzheimer's disease are detectable. Fe65 was also highly expressed in the cerebellum, thalamus and selected brain stem nuclei. Fe65 was evident in a sub-set of astrocytes within the stratum oriens and radiatum in the hippocampus. Expression of Fe65 was found to be developmentally regulated with levels reducing after embryonic day 15 and increasing again progressively from post-partum day 10 up to adulthood, a developmental pattern that partially parallels that of APP. These data indicate a widespread distribution of Fe65 in neurones throughout mouse brain and also suggest that Fe65 may have functions independent of APP and any potential role in the pathogenesis of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Astrocitos/metabolismo , Encéfalo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Envejecimiento/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Diferenciación Celular/fisiología , Cricetinae , Femenino , Feto , Regulación del Desarrollo de la Expresión Génica/fisiología , Inmunohistoquímica , Ratones , Ratones Endogámicos
2.
Cell Death Differ ; 19(3): 416-27, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21818119

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder marked by the selective degeneration of dopaminergic neurons in the nigrostriatal pathway. Several lines of evidence indicate that mitochondrial dysfunction contributes to its etiology. Other studies have suggested that alterations in sterol homeostasis correlate with increased risk for PD. Whether these observations are functionally related is, however, unknown. In this study, we used a toxin-induced mouse model of PD and measured levels of nine sterol intermediates. We found that lanosterol is significantly (∼50%) and specifically reduced in the nigrostriatal regions of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, indicative of altered lanosterol metabolism during PD pathogenesis. Remarkably, exogenous addition of lanosterol rescued dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP+)-induced cell death in culture. Furthermore, we observed a marked redistribution of lanosterol synthase from the endoplasmic reticulum to mitochondria in dopaminergic neurons exposed to MPP+, suggesting that lanosterol might exert its survival effect by regulating mitochondrial function. Consistent with this model, we find that lanosterol induces mild depolarization of mitochondria and promotes autophagy. Collectively, our results highlight a novel sterol-based neuroprotective mechanism with direct relevance to PD.


Asunto(s)
Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Lanosterol/farmacología , Intoxicación por MPTP/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/patología , Humanos , Intoxicación por MPTP/tratamiento farmacológico , Intoxicación por MPTP/patología , Ratones , Mitocondrias/patología
3.
Eur J Neurosci ; 13(2): 241-7, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11168528

RESUMEN

The neuronal cyclin-dependent kinase p35/cdk5 comprises a catalytic subunit (cdk5) and an activator subunit (p35). To identify novel p35/cdk5 substrates, we utilized the yeast two-hybrid system to screen for human p35 binding partners. From one such screen, we identified beta-catenin as an interacting protein. Confirmation that p35 binds to beta-catenin was obtained by using glutathione S-transferase (GST)-beta-catenin fusion proteins that interacted with both endogenous and transfected p35, and by showing that beta-catenin was present in p35 immunoprecipitates. p35 and beta-catenin also displayed overlapping subcellular distribution patterns in cells including neurons. Finally, we demonstrated that p35/cdk5 phosphorylates beta-catenin. beta-catenin also binds to presenilin-1 and altered beta-catenin/presenilin-1 interactions may be mechanistic in Alzheimer's disease (AD). Abnormal p35/cdk5 activity has also been suggested to contribute to AD. We therefore investigated how modulation of p35/cdk5 activity influenced beta-catenin/presenilin-1 interactions. Inhibition of p35/cdk5 with roscovitine did not alter the steady state levels of either beta-catenin or presenilin-1 but reduced the amount of presenilin-1 bound to beta-catenin. Thus, p35/cdk5 binds and phosphorylates beta-catenin and regulates its binding to presenilin-1. The findings reported here therefore provide a novel molecular framework to connect p35/cdk5 with beta-catenin and presenilin-1 in AD.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transactivadores , Enfermedad de Alzheimer/metabolismo , Animales , Células CHO , Calpaína/metabolismo , Corteza Cerebral/citología , Cricetinae , Quinasa 5 Dependiente de la Ciclina , Inhibidores Enzimáticos/farmacología , Humanos , Riñón/citología , Degeneración Nerviosa/metabolismo , Fosforilación , Presenilina-1 , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Purinas/farmacología , Ratas , Roscovitina , beta Catenina
4.
J Neurochem ; 76(1): 316-20, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11146006

RESUMEN

Threonine(668) (thr(668)) within the carboxy-terminus of the Alzheimer's disease amyloid precursor protein (APP) is a known in vivo phosphorylation site. Phosphorylation of APPthr(668) is believed to regulate APP function and metabolism. Thr(668) precedes a proline, which suggests that it is targeted for phosphorylation by proline-directed kinase(s). We have investigated the ability of four major neuronally active proline-directed kinases, cyclin dependent protein kinase-5, glycogen synthase kinase-3 beta, p42 mitogen-activated protein kinase and stress-activated protein kinase-1b, to phosphorylate APPthr(668) and report here that SAPK1b induces robust phosphorylation of this site both in vitro and in vivo. This finding provides a molecular framework to link cellular stresses with APP metabolism in both normal and disease states.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Sitios de Unión/fisiología , Células CHO , Células COS , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Cricetinae , Quinasa 5 Dependiente de la Ciclina , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Glucógeno Sintasa Quinasa 3 , Glucógeno Sintasa Quinasas , Isoenzimas/genética , Isoenzimas/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 10 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas de Neurofilamentos/metabolismo , Fosforilación , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Treonina/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda