Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.506
Filtrar
1.
Cell ; 177(6): 1419-1435.e31, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31056281

RESUMEN

Horse domestication revolutionized warfare and accelerated travel, trade, and the geographic expansion of languages. Here, we present the largest DNA time series for a non-human organism to date, including genome-scale data from 149 ancient animals and 129 ancient genomes (≥1-fold coverage), 87 of which are new. This extensive dataset allows us to assess the modern legacy of past equestrian civilizations. We find that two extinct horse lineages existed during early domestication, one at the far western (Iberia) and the other at the far eastern range (Siberia) of Eurasia. None of these contributed significantly to modern diversity. We show that the influence of Persian-related horse lineages increased following the Islamic conquests in Europe and Asia. Multiple alleles associated with elite-racing, including at the MSTN "speed gene," only rose in popularity within the last millennium. Finally, the development of modern breeding impacted genetic diversity more dramatically than the previous millennia of human management.


Asunto(s)
Caballos/genética , Animales , Asia , Evolución Biológica , Cruzamiento/historia , ADN Antiguo/análisis , Domesticación , Equidae/genética , Europa (Continente) , Femenino , Variación Genética/genética , Genoma/genética , Historia Antigua , Masculino , Filogenia
2.
Nature ; 598(7882): 634-640, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34671162

RESUMEN

Domestication of horses fundamentally transformed long-range mobility and warfare1. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling2-4 at Botai, Central Asia around 3500 BC3. Other longstanding candidate regions for horse domestication, such as Iberia5 and Anatolia6, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 BC, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association7 between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 BC8,9 driving the spread of Indo-European languages10. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium BC Sintashta culture11,12.


Asunto(s)
Domesticación , Genética de Población , Caballos , Animales , Arqueología , Asia , ADN Antiguo , Europa (Continente) , Genoma , Pradera , Caballos/genética , Filogenia
3.
Proc Natl Acad Sci U S A ; 120(8): e2205882120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36800386

RESUMEN

The PII superfamily consists of widespread signal transduction proteins found in all domains of life. In addition to canonical PII proteins involved in C/N sensing, structurally similar PII-like proteins evolved to fulfill diverse, yet poorly understood cellular functions. In cyanobacteria, the bicarbonate transporter SbtA is co-transcribed with the conserved PII-like protein, SbtB, to augment intracellular inorganic carbon levels for efficient CO2 fixation. We identified SbtB as a sensor of various adenine nucleotides including the second messenger nucleotides cyclic AMP (cAMP) and c-di-AMP. Moreover, many SbtB proteins possess a C-terminal extension with a disulfide bridge of potential redox-regulatory function, which we call R-loop. Here, we reveal an unusual ATP/ADP apyrase (diphosphohydrolase) activity of SbtB that is controlled by the R-loop. We followed the sequence of hydrolysis reactions from ATP over ADP to AMP in crystallographic snapshots and unravel the structural mechanism by which changes of the R-loop redox state modulate apyrase activity. We further gathered evidence that this redox state is controlled by thioredoxin, suggesting that it is generally linked to cellular metabolism, which is supported by physiological alterations in site-specific mutants of the SbtB protein. Finally, we present a refined model of how SbtB regulates SbtA activity, in which both the apyrase activity and its redox regulation play a central role. This highlights SbtB as a central switch point in cyanobacterial cell physiology, integrating not only signals from the energy state (adenyl-nucleotide binding) and the carbon supply via cAMP binding but also from the day/night status reported by the C-terminal redox switch.


Asunto(s)
Apirasa , Cianobacterias , Apirasa/genética , Apirasa/metabolismo , Bicarbonatos/metabolismo , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Cianobacterias/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas PII Reguladoras del Nitrógeno/metabolismo
4.
Semin Cancer Biol ; 94: 11-20, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37211293

RESUMEN

Reactive oxygen species (ROS) are common products of normal cellular metabolism, but their elevated levels can result in nucleotide modifications. These modified or noncanonical nucleotides often integrate into nascent DNA during replication, causing lesions that trigger DNA repair mechanisms such as the mismatch repair machinery and base excision repair. Four superfamilies of sanitization enzymes can effectively hydrolyze noncanonical nucleotides from the precursor pool and eliminate their unintended incorporation into DNA. Notably, we focus on the representative MTH1 NUDIX hydrolase, whose enzymatic activity is ostensibly nonessential under normal physiological conditions. Yet, the sanitization attributes of MTH1 are more prevalent when ROS levels are abnormally high in cancer cells, rendering MTH1 an interesting target for developing anticancer treatments. We discuss multiple MTH1 inhibitory strategies that have emerged in recent years, and the potential of NUDIX hydrolases as plausible targets for the development of anticancer therapeutics.


Asunto(s)
Nucleótidos , Hidrolasas Nudix , Monoéster Fosfórico Hidrolasas , Especies Reactivas de Oxígeno , Antineoplásicos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Enzimas Reparadoras del ADN , Nucleótidos/genética , Nucleótidos/metabolismo
5.
BMC Genomics ; 25(1): 286, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500030

RESUMEN

BACKGROUND: Encystment is an important survival strategy extensively employed by microbial organisms to survive unfavorable conditions. Single-celled ciliated protists (ciliates) are popular model eukaryotes for studying encystment, whereby these cells degenerate their ciliary structures and develop cyst walls, then reverse the process under more favorable conditions. However, to date, the evolutionary basis and mechanism for encystment in ciliates is largely unknown. With the rapid development of high-throughput sequencing technologies, genome sequencing and comparative genomics of ciliates have become effective methods to provide insights into above questions. RESULTS: Here, we profiled the MAC genome of Pseudourostyla cristata, a model hypotrich ciliate for encystment studies. Like other hypotrich MAC genomes, the P. cristata MAC genome is extremely fragmented with a single gene on most chromosomes, and encodes introns that are generally small and lack a conserved branch point for pre-mRNA splicing. Gene family expansion analyses indicate that multiple gene families involved in the encystment are expanded during the evolution of P. cristata. Furthermore, genomic comparisons with other five representative hypotrichs indicate that gene families of phosphorelay sensor kinase, which play a role in the two-component signal transduction system that is related to encystment, show significant expansion among all six hypotrichs. Additionally, cyst wall-related chitin synthase genes have experienced structural changes that increase them from single-exon to multi-exon genes during evolution. These genomic features potentially promote the encystment in hypotrichs and enhance their ability to survive in adverse environments during evolution. CONCLUSIONS: We systematically investigated the genomic structure of hypotrichs and key evolutionary phenomenon, gene family expansion, for encystment promotion in ciliates. In summary, our results provided insights into the evolutionary mechanism of encystment in ciliates.


Asunto(s)
Cilióforos , Quistes , Humanos , Genómica , Mapeo Cromosómico , Transducción de Señal , Cilióforos/genética
6.
BMC Biotechnol ; 24(1): 41, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862994

RESUMEN

BACKGROUND: Genetic diversity, population structure, agro-morphological traits, and molecular characteristics, are crucial for either preserving genetic resources or developing new cultivars. Due to climate change, water availability for agricultural use is progressively diminishing. This study used 100 molecular markers (25 TRAP, 22 SRAP, 23 ISTR, and 30 SSR). Additionally, 15 morphological characteristics were utilized to evaluate the optimal agronomic traits of 12 different barley genotypes under arid conditions. RESULTS: Substantial variations, ranging from significant to highly significant, were observed in the 15 agromorphological parameters evaluated among the 12 genotypes. The KSU-B101 barley genotype demonstrated superior performance in five specific traits: spike number per plant, 100-grain weight, spike number per square meter, harvest index, and grain yield. These results indicate its potential for achieving high yields in arid regions. The Sahrawy barley genotype exhibited the highest values across five parameters, namely leaf area, spike weight per plant, spike length, spike weight per square meter, and biological yield, making it a promising candidate for animal feed. The KSU-B105 genotype exhibited early maturity and a high grain count per spike, which reflects its early maturity and ability to produce a high number of grains per spike. This suggests its suitability for both animal feed and human food in arid areas. Based on marker data, the molecular study found that the similarity coefficients between the barley genotypes ranged from 0.48 to 0.80, with an average of 0.64. The dendrogram constructed from these data revealed three distinct clusters with a similarity coefficient of 0.80. Notably, the correlation between the dendrogram and its similarity matrix was high (0.903), indicating its accuracy in depicting the genetic relationships. The combined analysis revealed a moderate correlation between the morphological and molecular analysis, suggesting alignment between the two characterization methods. CONCLUSIONS: The morphological and molecular analyses of the 12 barley genotypes in this study effectively revealed the varied genetic characteristics of their agro-performance in arid conditions. KSU-B101, Sahrawy, and KSU-B105 have emerged as promising candidates for different agricultural applications in arid regions. Further research on these genotypes could reveal their full potential for breeding programs.


Asunto(s)
Genotipo , Hordeum , Hordeum/genética , Variación Genética , Marcadores Genéticos/genética
7.
BMC Plant Biol ; 24(1): 538, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867179

RESUMEN

BACKGROUND: The combination of compost and biochar (CB) plays an important role in soil restoration and mitigation strategies against drought stress in plants. In the current study, the impact of CB was determined on the characteristics of saline calcareous soil and the productivity of fenugreek (Trigonella foenum-graecum L.) plants. The field trials examined CB rates (CB0, CB10 and CB20 corresponding to 0, 10, and 20 t ha‒1, respectively) under deficit irrigation [DI0%, DI20%, and DI40% receiving 100, 80, and 60% crop evapotranspiration (ETc), respectively] conditions on growth, seed yield (SY), quality, and water productivity (WP) of fenugreek grown in saline calcareous soils. RESULTS: In general, DI negatively affected the morpho-physio-biochemical responses in plants cultivated in saline calcareous soils. However, amendments of CB10 or CB20 improved soil structure under DI conditions. This was evidenced by the decreased pH, electrical conductivity of soil extract (ECe), and bulk density but increased organic matter, macronutrient (N, P, and K) availability, water retention, and total porosity; thus, maintaining better water and nutritional status. These soil modifications improved chlorophyll, tissue water contents, cell membrane stability, photosystem II photochemical efficiency, photosynthetic performance, and nutritional homeostasis of drought-stressed plants. This was also supported by increased osmolytes, non-enzymatic, and enzymatic activities under DI conditions. Regardless of DI regimes, SY was significantly (P ≤ 0.05) improved by 40.0 and 102.5% when plants were treated with CB10 and CB20, respectively, as similarly observed for seed alkaloids (87.0, and 39.1%), trigonelline content (43.8, and 16.7%) and WP (40.9, and 104.5%) over unamended control plants. CONCLUSIONS: Overall, the application of organic amendments of CB can be a promising sustainable solution for improving saline calcareous soil properties, mitigating the negative effects of DI stress, and enhancing crop productivity in arid and semi-arid agro-climates.


Asunto(s)
Carbón Orgánico , Compostaje , Semillas , Suelo , Trigonella , Trigonella/metabolismo , Trigonella/fisiología , Trigonella/crecimiento & desarrollo , Suelo/química , Semillas/crecimiento & desarrollo , Compostaje/métodos , Deshidratación , Agua/metabolismo , Salinidad
8.
Cancer Cell Int ; 24(1): 89, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419070

RESUMEN

Cancer chemoresistance is a problematic dilemma that significantly restrains numerous cancer management protocols. It can promote cancer recurrence, spreading of cancer, and finally, mortality. Accordingly, enhancing the responsiveness of cancer cells towards chemotherapies could be a vital approach to overcoming cancer chemoresistance. Tumour cells express a high level of sphingosine kinase-1 (SphK1), which acts as a protooncogenic factor and is responsible for the synthesis of sphingosine-1 phosphate (S1P). S1P is released through a Human ATP-binding cassette (ABC) transporter to interact with other phosphosphingolipids components in the interstitial fluid in the tumor microenvironment (TME), provoking communication, progression, invasion, and tumor metastasis. Also, S1P is associated with several impacts, including anti-apoptotic behavior, metastasis, mesenchymal transition (EMT), angiogenesis, and chemotherapy resistance. Recent reports addressed high levels of S1P in several carcinomas, including ovarian, prostate, colorectal, breast, and HCC. Therefore, targeting the S1P/SphK signaling pathway is an emerging therapeutic approach to efficiently attenuate chemoresistance. In this review, we comprehensively discussed S1P functions, metabolism, transport, and signaling. Also, through a bioinformatic framework, we pointed out the alterations of SphK1 gene expression within different cancers with their impact on patient survival, and we demonstrated the protein-protein network of SphK1, elaborating its sparse roles. Furthermore, we made emphasis on different machineries of cancer resistance and the tight link with S1P. We evaluated all publicly available SphK1 inhibitors and their inhibition activity using molecular docking and how SphK1 inhibitors reduce the production of S1P and might reduce chemoresistance, an approach that might be vital in the course of cancer treatment and prognosis.

9.
Mol Pharm ; 21(2): 622-632, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38273445

RESUMEN

Poly(ethylene glycol) (PEG) is used in many common products, such as cosmetics. PEG, however, is also used to covalently conjugate drug molecules, proteins, or nanocarriers, which is termed PEGylation, to serve as a shield against the natural immune system of the human body. Repeated administration of some PEGylated products, however, is known to induce anti-PEG antibodies. In addition, preexisting anti-PEG antibodies are now being detected in healthy individuals who have never received PEGylated therapeutics. Both treatment-induced and preexisting anti-PEG antibodies alter the pharmacokinetic properties, which can result in a subsequent reduction in the therapeutic efficacy of administered PEGylated therapeutics through the so-called accelerated blood clearance (ABC) phenomenon. Moreover, these anti-PEG antibodies are widely reported to be related to severe hypersensitivity reactions following the administration of PEGylated therapeutics, including COVID-19 vaccines. We recently reported that the topical application of a cosmetic product containing PEG derivatives induced anti-PEG immunoglobulin M (IgM) in a mouse model. Our finding indicates that the PEG derivatives in cosmetic products could be a major cause of the preexistence of anti-PEG antibodies in healthy individuals. In this study, therefore, the pharmacokinetics and therapeutic effects of Doxil (doxorubicin hydrochloride-loaded PEGylated liposomes) and oxaliplatin-loaded PEGylated liposomes (Liposomal l-OHP) were studied in mice. The anti-PEG IgM antibodies induced by the topical application of cosmetic products obviously accelerated the blood clearance of both PEGylated liposomal formulations. Moreover, in C26 tumor-bearing mice, the tumor growth suppressive effects of both Doxil and Liposomal l-OHP were significantly attenuated in the presence of anti-PEG IgM antibodies induced by the topical application of cosmetic products. These results confirm that the topical application of a cosmetic product containing PEG derivatives could produce preexisting anti-PEG antibodies that then affect the therapeutic efficacy of subsequent doses of PEGylated therapeutics.


Asunto(s)
Doxorrubicina/análogos & derivados , Liposomas , Neoplasias , Ratones , Humanos , Animales , Composición de Medicamentos , Vacunas contra la COVID-19 , Inmunoglobulina M , Polietilenglicoles
10.
Pediatr Res ; 95(3): 835-842, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37758866

RESUMEN

BACKGROUND: Lower respiratory tract infection (LRTI) including pneumonia, bronchitis, and bronchiolitis is the sixth leading cause of mortality around the world and leading cause of death in children under 5 years. Systemic immune response to viral infection is well characterized. However, there is little data regarding the immune response at the upper respiratory tract mucosa. The upper respiratory mucosa is the site of viral entry, initial replication and the first barrier against respiratory infections. Lower respiratory tract samples can be challenging to obtain and require more invasive procedures. However, nasal wash (NW) samples from the upper respiratory tract can be obtained with minimal discomfort to the patient. METHOD: In a pilot study, we developed a protocol using NW samples obtained from hospitalized children with LRTI that enables single cell RNA sequencing (scRNA-seq) after the NW sample is methanol-fixed. RESULTS: We found no significant changes in scRNA-seq qualitative and quantitative parameters between methanol-fixed and fresh NW samples. CONCLUSIONS: We present a novel protocol to enable scRNA-seq in NW samples from children admitted with LRTI. With the inherent challenges associated with clinical samples, the protocol described allows for processing flexibility as well as multicenter collaboration. IMPACT: There are no significant differences in scRNA-seq qualitative and quantitative parameters between methanol fixed and fresh Pediatric Nasal wash samples. The study demonstrates the effectiveness of methanol fixation process on preserving respiratory samples for single cell sequencing. This enables Pediatric Nasal wash specimen for single cell RNA sequencing in pediatric patients with respiratory tract infection and allows processing flexibility and multicenter collaboration.


Asunto(s)
Bronquiolitis , Neumonía , Infecciones del Sistema Respiratorio , Humanos , Niño , Lactante , Preescolar , Metanol , Proyectos Piloto
11.
J Nat Prod ; 87(4): 798-809, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38412432

RESUMEN

Structural and functional studies of the carminomycin 4-O-methyltransferase DnrK are described, with an emphasis on interrogating the acceptor substrate scope of DnrK. Specifically, the evaluation of 100 structurally and functionally diverse natural products and natural product mimetics revealed an array of pharmacophores as productive DnrK substrates. Representative newly identified DnrK substrates from this study included anthracyclines, angucyclines, anthraquinone-fused enediynes, flavonoids, pyranonaphthoquinones, and polyketides. The ligand-bound structure of DnrK bound to a non-native fluorescent hydroxycoumarin acceptor, 4-methylumbelliferone, along with corresponding DnrK kinetic parameters for 4-methylumbelliferone and native acceptor carminomycin are also reported for the first time. The demonstrated unique permissivity of DnrK highlights the potential for DnrK as a new tool in future biocatalytic and/or strain engineering applications. In addition, the comparative bioactivity assessment (cancer cell line cytotoxicity, 4E-BP1 phosphorylation, and axolotl embryo tail regeneration) of a select set of DnrK substrates/products highlights the ability of anthracycline 4-O-methylation to dictate diverse functional outcomes.


Asunto(s)
Metiltransferasas , Metiltransferasas/metabolismo , Metiltransferasas/química , Estructura Molecular , Productos Biológicos/farmacología , Productos Biológicos/química , Humanos , Antraciclinas/química , Antraciclinas/farmacología , Especificidad por Sustrato
12.
Bioorg Chem ; 147: 107409, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714116

RESUMEN

Sulfonamides have gained prominence as versatile agents in cancer therapy, effectively targeting a spectrum of cancer-associated enzymes. This review provides an extensive exploration of their multifaceted roles in cancer biology. Sulfonamides exhibit adaptability by acting as tyrosine kinase inhibitors, disrupting pivotal signaling pathways in cancer progression. Moreover, they disrupt pH regulation mechanisms in cancer cells as carbonic anhydrase inhibitors, inhibiting growth, and survival. Sulfonamides also serve as aromatase inhibitors, interfering with estrogen synthesis in hormone-driven cancers. Inhibition of matrix metalloproteinases presents an opportunity to impede cancer cell invasion and metastasis. Additionally, their emerging role as histone deacetylase inhibitors offers promising prospects in epigenetic-based cancer therapies. These diverse roles underscore sulfonamides as invaluable tools for innovative anti-cancer treatments, warranting further exploration for enhanced clinical applications and patient outcomes.


Asunto(s)
Antineoplásicos , Neoplasias , Sulfonamidas , Humanos , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Animales , Relación Estructura-Actividad
13.
Bioorg Chem ; 147: 107332, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581966

RESUMEN

Activin receptor­like kinase-5 (ALK5) is an outstanding member of the transforming growth factor-ß (TGF-ß) family. (TGF-ß) signaling pathway integrates pleiotropic proteins that regulate various cellular processes such as growth, proliferation, and differentiation. Dysregulation within the signaling pathway can cause variety of diseases, such as fibrosis, cardiovascular disease, and especially cancer, rendering ALK5 a potential drug target. Hence, various small molecules have been designed and synthesized as potent ALK5 inhibitors. In this review, we shed light on the current ATP-competitive inhibitors of ALK5 through diverse heterocyclic based scaffolds that are in clinical or pre-clinical phases of development. Moreover, we focused on the binding interactions of the compounds to the ATP binding site and the structure-activity relationship (SAR) of each scaffold, revealing new scopes for designing novel candidates with enhanced selectivity and metabolic profiles.


Asunto(s)
Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas , Receptor Tipo I de Factor de Crecimiento Transformador beta , Humanos , Relación Estructura-Actividad , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Estructura Molecular , Animales
14.
Bioorg Chem ; 144: 107089, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237393

RESUMEN

Eighteen novel compounds harboring the privileged thienopyrimidine scaffold (5a-q, and 6a),were designed based on molecular hybridization strategy. These compounds were synthesized and tested for their inhibitory activity against four different carbonic anhydrase isoforms: CA I, II, IX, and XII. Microwave and conventional techniques were applied for their synthesis. Compounds 5b, 5g, 5l, and 5p showed the highest inhibition activity against the four CA isoforms. Compound 5p exhibited promising inhibitory activity against CA II, CA IX and CA XII with KI values of8.6, 13.8, and 19 nM, respectively, relative to AAZ, where KIs = 12, 25, and 5.7 nM, respectively. Also, compound 5 l showed significant activity against the tumor-associated isoform CA IX with KI = 16.1 nM. All the newly synthesized compounds were also screened for their anticancer activity against NCI 60 cancer cell lines at a 10 µM concentration. Compound 5n showed 80.38, 83.95, and 87.39 % growth inhibition against the leukemic cell lines CCRF-CEM, HL-60 (TB), and RPMI-8226, respectively. Also, 5 h showed 87.57 % growth inhibition against breast cancer cell line MDA-MB-468; and 66.58 and 60.95 % inhibitionagainst renal cancer cell lines UO-31, and ACHN, respectively. A molecular docking studywas carried out to predict binding modes of our synthesized compounds in the binding pockets of the four carbonic anhydrase isoforms, and results revealed that compounds 5b, 5g, 5l, and 5p succeeded in mimicking the binding mode of AAZ through metal coordination with Zn+2 ion and binding to the amino acids Thr199, His94, and His96 that are critical for activity.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Anhidrasas Carbónicas , Pirimidinas , Inhibidores de Anhidrasa Carbónica/química , Estructura Molecular , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Anhidrasas Carbónicas/metabolismo , Antígenos de Neoplasias/metabolismo , Sulfonamidas/química , Isoformas de Proteínas/metabolismo
15.
BMC Vet Res ; 20(1): 1, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172872

RESUMEN

BACKGROUND: Camel filariasis induced variable clinical syndromes characterized by fever, lethargy, localized dermal lesions, loss of condition, and testicular and scrotal swelling. The objective of the present work focused on clarifying the diagnostic importance of clinical findings, serum testosterone, and semen analysis as well as blood smear and testicular histopathology as a differential tool between only balanoposthitis without filariasis male camels group (OnlyBpgr) and balanoposthitis-filariasis infected male camels group (BpFlgr). The study also monitored the associations between the severity of ticks' infestations in investigated male camels and the occurrence of balanoposthitis only or balanoposthitis with filariasis. RESULTS AND CONCLUSIONS: The study reported significant correlation between serum testosterone, serum cortisol, and sperm vitality and abnormalities percentages. The study included male camels (n = 250) classified into three groups: healthy control group (Contgr; n = 30), OnlyBpgr (n = 210), and BpFlgr (n = 10). These male camels were clinically and laboratory examined, and skin scraping tests and testicular histopathology were conducted. The study confirmed the association of the changes in clinical findings, whole blood picture, serum testosterone, serum cortisol, and semen analysis, with OnlyBpgr and BpFlgr. These changes were more prominent in BpFlgr than in OnlyBpgr. Skin scraping test results revealed a higher severity of live ticks' infestation in BpFlgr than in OnlyBpgr because, unlike OnlyBpgr, all camels in BpFlgr (n = 10) were suffering from live ticks' infestation. It also concluded the higher efficacy of histopathology of testicular tissues in male camels as a diagnostic tool for adult filaria in balanoposthitis-affected male camels than blood smear because all cases of camel filariasis in the current work were negative for microfilaria on microscopic examination of diurnal blood smear as well as testicular histopathology revealed detection of adult filaria in all camel filariasis associated with balanoposthitis. Strong correlation relationships were demonstrated between serum testosterone, serum cortisol, and semen analysis results. Positive correlations were reported between serum testosterone levels and sperm vitality percentages. However, negative correlations were stated between serum testosterone and each of serum cortisol and sperm abnormalities either in Contgr, OnlyBpgr, or BpFlgr.


Asunto(s)
Dipetalonema , Filariasis , Infecciones por Nematodos , Masculino , Animales , Camelus , Semen , Hidrocortisona , Análisis de Semen/veterinaria , Filariasis/veterinaria , Infecciones por Nematodos/veterinaria , Testosterona
16.
BMC Public Health ; 24(1): 395, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321448

RESUMEN

Recently, COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, caused > 6 million deaths. Symptoms included respiratory strain and complications, leading to severe pneumonia. SARS-CoV-2 attaches to the ACE-2 receptor of the host cell membrane to enter. Targeting the SARS-CoV-2 entry may effectively inhibit infection. Acid sphingomyelinase (ASMase) is a lysosomal protein that catalyzes the conversion of sphingolipid (sphingomyelin) to ceramide. Ceramide molecules aggregate/assemble on the plasma membrane to form "platforms" that facilitate the viral intake into the cell. Impairing the ASMase activity will eventually disrupt viral entry into the cell. In this review, we identified the metabolism of sphingolipids, sphingolipids' role in cell signal transduction cascades, and viral infection mechanisms. Also, we outlined ASMase structure and underlying mechanisms inhibiting viral entry 40 with the aid of inhibitors of acid sphingomyelinase (FIASMAs). In silico molecular docking analyses of FIASMAs with inhibitors revealed that dilazep (S = - 12.58 kcal/mol), emetine (S = - 11.65 kcal/mol), pimozide (S = - 11.29 kcal/mol), carvedilol (S = - 11.28 kcal/mol), mebeverine (S = - 11.14 kcal/mol), cepharanthine (S = - 11.06 kcal/mol), hydroxyzin (S = - 10.96 kcal/mol), astemizole (S = - 10.81 kcal/mol), sertindole (S = - 10.55 kcal/mol), and bepridil (S = - 10.47 kcal/mol) have higher inhibition activity than the candidate drug amiodarone (S = - 10.43 kcal/mol), making them better options for inhibition.


Asunto(s)
COVID-19 , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Esfingomielina Fosfodiesterasa/metabolismo , Ceramidas/metabolismo , Esfingolípidos
17.
BMC Public Health ; 24(1): 605, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408947

RESUMEN

BACKGROUND: A considerable body of research has demonstrated that reducing sitting time benefits health. Therefore, the current study aimed to explore the prevalence of sedentary behavior (SB) and its patterns. METHODS: A total of 6975 university students (49.1% female) were chosen randomly to participate in a face-to-face interview. The original English version of the sedentary behavior questionnaire (SBQ) was previously translated into Arabic. Then, the validated Arabic version of the SBQ was used to assess SB. The Arabic SBQ included 9 types of SB (watching television, playing computer/video games, sitting while listening to music, sitting and talking on the phone, doing paperwork or office work, sitting and reading, playing a musical instrument, doing arts and crafts, and sitting and driving/riding in a car, bus or train) on weekdays and weekends. RESULTS: SBQ indicated that the total time of SB was considerably high (478.75 ± 256.60 and 535.86 ± 316.53 (min/day) during weekdays and weekends, respectively). On average, participants spent the most time during the day doing office/paperwork (item number 4) during weekdays (112.47 ± 111.11 min/day) and weekends (122.05 ± 113.49 min/day), followed by sitting time in transportation (item number 9) during weekdays (78.95 ± 83.25 min/day) and weekends (92.84 ± 100.19 min/day). The average total sitting time of the SBQ was 495.09 ± 247.38 (min/day) and 58.4% of the participants reported a high amount of sitting time (≥ 7 hours/day). Independent t-test showed significant differences (P ≤ 0.05) between males and females in all types of SB except with doing office/paperwork (item number 4). The results also showed that male students have a longer daily sitting time (521.73 ± 236.53 min/day) than females (467.38 ± 255.28 min/day). Finally, 64.1% of the males reported a high amount of sitting time (≥ 7 hours/day) compared to females (52.3%). CONCLUSION: In conclusion, the total mean length of SB in minutes per day for male and female university students was considerably high. About 58% of the population appeared to spend ≥7 h/day sedentary. Male university students are likelier to sit longer than female students. Our findings also indicated that SB and physical activity interventions are needed to raise awareness of the importance of adopting an active lifestyle and reducing sitting time.


Asunto(s)
Conducta Sedentaria , Estudiantes , Humanos , Masculino , Femenino , Prevalencia , Arabia Saudita/epidemiología , Universidades
18.
BMC Pediatr ; 24(1): 99, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317100

RESUMEN

OBJECTIVE: The simultaneous presence of celiac disease and type 1 diabetes (T1DM) is coupled with more hazards of comorbidities and complications. This current study aimed to screen for celiac disease in Egyptian children with type 1 diabetes and evaluate its impact on glycemic control. METHODS: A cross-sectional study was verified with 200 Egyptian children diagnosed with T1DM and having a diabetic duration of less than five years. Testing for anti-tissue transglutaminase IgA (tTG-IgA), anti-tissue transglutaminase IgG (tTG-IgG), anti-Endomysial IgA (EMA), and Hb A1c levels were done. RESULTS: The serological screening revealed that 11 cases (5.5%) tested positive; 8 children with T1DM (4.0%) showed tTG-IgA antibodies ≥ 10 times the upper limit of normal (ULN) with at least one symptom; and 3 cases (1.5%) had levels between 20 and 50 IU/ml (considering a cut-off point of 10 U/ML for positive results). Intestinal biopsy was performed for these three cases, with one case detected to have subtotal villous atrophy, resulting in an overall prevalence of celiac disease in T1DM as 4.5%. Children with positive screening exhibited a higher insulin dose, a higher HbA1c, an increased frequency of hypoglycemic attacks, and recurrent DKA compared to negative cases. A negative correlation was detected between tTG-IgA antibodies with height Z score and hemoglobin level, while a positive correlation was found between tTG-IgA antibodies and HbA1c level. CONCLUSION: Undiagnosed celiac disease in children with T1DM negatively impacted metabolic control and affected their general health.


Asunto(s)
Enfermedad Celíaca , Diabetes Mellitus Tipo 1 , Niño , Humanos , Enfermedad Celíaca/diagnóstico , Enfermedad Celíaca/epidemiología , Enfermedad Celíaca/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/epidemiología , Transglutaminasas , Prevalencia , Estudios Transversales , Egipto/epidemiología , Hemoglobina Glucada , Autoanticuerpos , Inmunoglobulina G , Inmunoglobulina A
19.
BMC Biol ; 21(1): 121, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37226201

RESUMEN

BACKGROUND: The ShK toxin from Stichodactyla helianthus has established the therapeutic potential of sea anemone venom peptides, but many lineage-specific toxin families in Actiniarians remain uncharacterised. One such peptide family, sea anemone 8 (SA8), is present in all five sea anemone superfamilies. We explored the genomic arrangement and evolution of the SA8 gene family in Actinia tenebrosa and Telmatactis stephensoni, characterised the expression patterns of SA8 sequences, and examined the structure and function of SA8 from the venom of T. stephensoni. RESULTS: We identified ten SA8-family genes in two clusters and six SA8-family genes in five clusters for T. stephensoni and A. tenebrosa, respectively. Nine SA8 T. stephensoni genes were found in a single cluster, and an SA8 peptide encoded by an inverted SA8 gene from this cluster was recruited to venom. We show that SA8 genes in both species are expressed in a tissue-specific manner and the inverted SA8 gene has a unique tissue distribution. While the functional activity of the SA8 putative toxin encoded by the inverted gene was inconclusive, its tissue localisation is similar to toxins used for predator deterrence. We demonstrate that, although mature SA8 putative toxins have similar cysteine spacing to ShK, SA8 peptides are distinct from ShK peptides based on structure and disulfide connectivity. CONCLUSIONS: Our results provide the first demonstration that SA8 is a unique gene family in Actiniarians, evolving through a variety of structural changes including tandem and proximal gene duplication and an inversion event that together allowed SA8 to be recruited into the venom of T. stephensoni.


Asunto(s)
Anémonas de Mar , Animales , Anémonas de Mar/genética , Genómica , Inversión Cromosómica , Cisteína , Disulfuros
20.
J Arthroplasty ; 39(9): 2389-2394.e2, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38636676

RESUMEN

BACKGROUND: The purpose of this study was to perform a systematic review and meta-analysis to evaluate the association between tranexamic acid (TXA) use during primary total hip arthroplasty (THA) and primary total knee arthroplasty (TKA), and the risk of developing periprosthetic joint infection (PJI) after these procedures. METHODS: A systematic review was carried out from inception to October 17, 2022. There were 6 studies that were ultimately included in the meta-analysis. The association between the development of PJI and TXA was analyzed using odds ratios (ORs) with 95% confidence intervals (CIs) and estimates of risk difference (RD). Subgroup analysis was performed to evaluate only studies reporting out to 90 days of follow-up versus more than 90 days of follow-up. RESULTS: Among 2,098,469 arthroplasties, TXA utilization was associated with an overall lower risk of PJI (OR = 0.63 [95% CI 0.42 to 0.96], P < .001) and a 0.4% lower incidence of PJI (RD = -0.0038, 95% CI [-0.005 to -0.002], P < .001). When subgrouping the studies according to length of follow-up, TXA was associated with a lower risk of PJI (OR = 0.43 [95% CI 0.35 to 0.53], P < .001) and a 1% lower incidence of PJI (RD = -0.0095 [95% CI -0.013 to -0.005], P < .001) in patients followed for more than 90 days. CONCLUSIONS: This meta-analysis demonstrates that TXA use is associated with a reduced risk of PJI, with our RD analysis identifying an approximately 0.4% reduction in PJI rates with TXA use. These findings provide even more data to support the routine use of TXA during primary THA and primary TKA.


Asunto(s)
Antifibrinolíticos , Artroplastia de Reemplazo de Cadera , Artroplastia de Reemplazo de Rodilla , Infecciones Relacionadas con Prótesis , Ácido Tranexámico , Humanos , Ácido Tranexámico/uso terapéutico , Artroplastia de Reemplazo de Cadera/efectos adversos , Artroplastia de Reemplazo de Rodilla/efectos adversos , Infecciones Relacionadas con Prótesis/prevención & control , Infecciones Relacionadas con Prótesis/etiología , Infecciones Relacionadas con Prótesis/epidemiología , Antifibrinolíticos/uso terapéutico , Incidencia , Femenino
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda