Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 23(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37631683

RESUMEN

Photovoltaic (PV) systems are crucial to the production of electricity for a newly established community in Egypt, especially in grid-tied systems. Power quality (PQ) issues appear as a result of PV connection with the power grid (PG). PQ problems cause the PG to experience faults and harmonics, which affect consumers. A series compensator dynamic voltage restorer (DVR) is the most affordable option for resolving the abovementioned PQ problems. To address PQ difficulties, this paper describes a grid-tied PV combined with a DVR that uses a rotating dq reference frame (dqRF) controller. The main goal of this study is to apply and construct an effective PI controller for a DVR to mitigate PQ problems. The artificial rabbits optimization (ARO) is used to obtain the best tune of the PI controller. The obtained results are compared with five optimization techniques (L-SHADE, CMAES, WOA, PSO, and GWO) to show its impact and effectiveness. Additionally, Lyapunov's function is used to analyze and evaluate the proposed controller stability. Also, a mathematical analysis of the investigated PV, boost converter, and rotating dqRF control is performed. Two fault test scenarios are examined to confirm the efficacy of the suggested control approach. The parameters' (voltage, current, and power) waveforms for the suggested system are improved, and the system is kept running continuously under fault periods, which improves the performance of the system. Moreover, the findings demonstrate that the presented design successfully keeps the voltage at the required level with low THD% values at the load side according to the IEEE standards and displays a clear enhancement in voltage waveforms. The MATLAB/SIMULINK software is used to confirm the proposed system's performance.

2.
J Colloid Interface Sci ; 558: 68-77, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31585223

RESUMEN

We demonstrate the preparation of nanostructures cobalt oxide/reduced graphene oxide (Co3O4/rGO) nanocomposites by a simple one-step cost-effective hydrothermal technique for possible electrode materials in supercapacitor application. The X-ray diffraction patterns were employed to confirm the nanocomposite crystal system of Co3O4/rGO by demonstrating the existence of normal cubic spinel structure of Co3O4 in the matrix of Co3O4/rGO nanocomposite. FTIR and FT-Raman studies manifested the structural behaviour and quality of prepared Co3O4/rGO nanocomposite. The optical properties of the nanocomposite Co3O4/rGO have been investigated by UV absorption spectra. The SEM/TEM images showed that the Co3O4 nanoparticles in the Co3O4/rGO nanocomposites were covered over the surface of the rGO sheets. The electrical properties were analyzed in terms of real and imaginary permittivity, dielectric loss and AC conductivity. The electrocatalytic activities of synthesized Co3O4/rGO nanocomposites were determined by cyclic voltammetry and charge-discharge cycle to evaluate the supercapacitive performance. The specific capacitance of 754 Fg-1 was recorded for Co3O4/rGO nanocomposite based electrode in three electrode cell system. The electrode material exhibited an acceptable capability and excellent long-term cyclic stability by maintaining 96% after 1000 continuous cycles. These results showed that the prepared sample could be an ideal candidate for high-energy application as electrode materials. The synthesized Co3O4/rGO nanocomposite is a versatile material and can be used in various application such as fuel cells, electrochemical sensors, gas sensors, solar cells, and photocatalysis.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda