Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
J Environ Manage ; 365: 121520, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38917540

RESUMEN

Microalgae are considered sustainable resources for the production of biofuel, feed, and bioactive compounds. Among various microalgal genera, the Tetraselmis genus, containing predominantly marine microalgal species with wide tolerance to salinity and temperature, has a high potential for large-scale commercialization. Until now, Tetraselmis sp. are exploited at smaller levels for aquaculture hatcheries and bivalve production. However, its prolific growth rate leads to promising areal productivity and energy-dense biomass, so it is considered a viable source of third-generation biofuel. Also, microbial pathogens and contaminants are not generally associated with Tetraselmis sp. in outdoor conditions due to faster growth as well as dominance in the culture. Numerous studies revealed that the metabolite compositions of Tetraselmis could be altered favorably by changing the growth conditions, taking advantage of its acclimatization or adaptation ability in different conditions. Furthermore, the biorefinery approach produces multiple fractions that can be successfully upgraded into various value-added products along with biofuel. Overall, Tetraselmis sp. could be considered a potential strain for further algal biorefinery development under the circular bioeconomy framework. In this aspect, this review discusses the recent advancements in the cultivation and harvesting of Tetraselmis sp. for wider application in different sectors. Furthermore, this review highlights the key challenges associated with large-scale cultivation, biomass harvesting, and commercial applications for Tetraselmis sp.

2.
Chemosphere ; 351: 141245, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242513

RESUMEN

Water crisis around the world leads to a growing interest in emerging contaminants (ECs) that can affect human health and the environment. Research showed that thousands of compounds from domestic consumers, such as endocrine disrupting chemicals (EDCs), personal care products (PCPs), and pharmaceuticals active compounds (PhAcs), could be found in wastewater in concentration mostly from ng L-1 to µg L-1. However, generally, wastewater treatment plants (WWTPs) are not designed to remove these ECs from wastewater to their discharge levels. Scientists are looking for economically feasible biotreatment options enabling the complete removal of ECs before discharge. Microalgae cultivation in domestic wastewater is likely a feasible approach for removing emerging contaminants and simultaneously removing any residual organic nutrients. Microalgal growth rate and contaminants removal efficiency could be affected by various factors, including light intensity, CO2 addition, presence of different nutrients, etc., and these parameters could greatly help make microalgae treatment more efficient. Furthermore, the algal biomass harvests could be repurposed to produce various bulk chemicals such as sustainable aviation fuel, biofuel, bioplastic, and biochar; this could significantly enhance the economic viability. Therefore, this review summarizes the microalgae-based bioprocess and their mechanisms for removing different ECs from different wastewaters and highlights the different strategies to improve the ECs removal efficiency. Furthermore, this review shows the role of different ECs in biomass profile and the relevance of using ECs-treated microalgae biomass to produce green products, as well as highlights the challenges and future research recommendations.


Asunto(s)
Microalgas , Aguas Residuales , Humanos , Biomasa
3.
Sci Total Environ ; 873: 162384, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36841414

RESUMEN

Rapid aquaculture industry development contributed to a major increase in aquaculture wastewater generation. In the context of a circular economy, aquaculture wastewater treatment should simultaneously recover nutrients from the wastewater. Among many treatment methods, bioremediation using microalgae could be a cost-effective and environmentally friendly system that can be applied to treat aquaculture wastewater and simultaneously produce high-value microalgal biomass. This study explored the feasibility of treating brackish wastewater (0.8 % NaCl) generated from a Qatari commercial tilapia farm by microalgae. At first, 10 strains were grown using wastewater from the local farm in an indoor experiment. Based on nitrogen assimilation, biomass yield, biomass quality, and ease of harvesting, 4 candidate strains (Haematococcus sp., Neochloris sp., Monoraphidium sp., and Nostoc sp.) were shortlisted for outdoor growth experiments. Although Nostoc sp. could not grow outdoor in the wastewater, the other three strains were able to assimilate at least 70.5 % of the total nitrogen in the wastewater. Haematococcus sp. and Neochloris sp. could be harvested using self-settling, whereas Monoraphidium required an energy-intensive tangential flow filtration membrane process. Hence, the overall energy requirement for bioremediation, including biomass dewatering, for Haematococcus sp., Neochloris sp., and Monoraphidium sp. were determined as 0.64, 0.78, and 5.68 MJ/m3, respectively. Neochloris sp. had almost twice the biomass yield compared to Haematococcus sp. - suggesting that Neochloris sp. could be a potential candidate for aquaculture wastewater treatment.


Asunto(s)
Chlorophyceae , Microalgas , Aguas Residuales , Biodegradación Ambiental , Acuicultura/métodos , Biomasa , Nitrógeno/análisis
4.
Sci Total Environ ; 847: 157648, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35908710

RESUMEN

Several edible and non-edible oil sources are currently being developed as renewable basestocks for biolubricant production. However, these feedstocks possess undesirable physicochemical properties limiting their lubricant applications. Chemical modification and additive-based routes could be used to modify their properties -suitable for different biolubricant applications. The first part of this study compares how the selected modifications affect the properties of the basestocks. Next, the techno-economic analysis (TEA) was conducted to study 4 selected biolubricants and a potential biolubricant derived from marine microalgae biomass. Oxidative stabilities of chemically modified biolubricants followed the order of epoxidation> triesterification> estolide. Pour points of triesters showed minimal increments and reduced for estolides, whereas epoxidation increased pour points. Estolides exhibit maximum kinematic viscosity increment among chemical modification routes, followed by TMP-transesterification and epoxidation. The oxidative stability of chemically modified biolubricants was higher than additized biolubricants; conversely, the viscosity increments and pour point reductions for additized biolubricants were higher than chemically modified biolubricants. TEA results show that the unit cost for producing 1-kg estolide was the highest among the chemical modification routes. The unit cost per kilogram of jatropha biolubricant produced using the additive-based route was lower than chemically modified biolubricants. Due to a high microalgal oil feedstock cost, the unit cost per kilogram of additized microalgae oil biolubricant was more than the unit cost of additized Jatropha oil. The techno-economic feasibility of biolubricant production from marine microalgal oil could be improved by adopting a biorefinery approach.


Asunto(s)
Microalgas , Biocombustibles , Biomasa , Esterificación , Lubricantes/química , Oxidación-Reducción
5.
Sci Total Environ ; 755(Pt 1): 142532, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33035988

RESUMEN

This study investigated the feasibility of microalgal biomass production using waste nitrogen fertilizers (WNFs) generated by the Qatar Fertiliser Company (QAFCO). From the plant, three types of WNFs (WNF1, WNF2, and WNF3) were collected; WNF1 and WNF2 had high solubility (e.g., 1000 g/L) whereas WNF3 had low solubility (65 g/L). For a lower dosage (i.e., 100 mg N/L) of these WNFs, >98% of nitrogen was soluble in water for WNF1 and WNF2; however, 52 mg N/L was soluble for WNF3. Nitrogen content in these wastes was 44, 43, and 39% for WNF1, WNF2, and WNF3, respectively. As these WNFs were used as the sole nitrogen source to grow Tetraselmis sp., Picochlorum sp., and Synechococcus sp., Tetraselmis sp. could utilize all the three WNFs more efficiently than other two strains. The biomass yield of Tetraselmis sp. in a 100,000 L raceway pond was 0.58 g/L and 0.67 g/L for mixed WNFs (all WNF in equal ratio) and urea, respectively. The metabolite profiles of Tetraselmis sp. biomass grown using mixed WNFs were very similar to the biomass obtained from urea-added culture - suggesting that WNFs produced Tetraselmis sp. biomass could be used as animal feed ingredients. Life cycle impact assessment (LCIA) was conducted for six potential scenarios, using the data from the outdoor cultivation. The production of Tetraselmis sp. biomass in QAFCO premises using its WNFs, flue gas, and waste heat could not only eliminate the consequences of landfilling WNFs but also would improve the energy, cost, and environmental burdens of microalgal biomass production.


Asunto(s)
Microalgas , Biomasa , Fertilizantes , Nitrógeno , Qatar , Aguas Residuales
6.
J Biotechnol ; 341: 1-20, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34534593

RESUMEN

An increase in fish consumption, combined with a decrease in wild fish harvest, is driving the aquaculture industry at rapid pace. Today, farmed seafood accounts for about half of all global seafood demand for human consumption. As the aquaculture industry continues to grow, so does the market for aquafeed. Currently, some of the feed ingredients are coming from low-value forage fishes (fish meal) and terrestrial plants. The production of fish meal can't be increased as it would affect the sustainability and ecosystem of the ocean. Similarly, increasing the production of terrestrial plant-based feed leads to deforestation and increased freshwater use. Hence, alternative and environmentally sustainable sources of feed ingredients need to be developed. Microalgae biomasses represent potential feed source ingredients as the cell metabolites of these microorganisms contain a blend of essential amino acids, healthy triglycerides as fat, vitamins, and pigments. In addition to serving as bulk ingredient in aquafeed, their unique array of bioactive compounds can increase the survivability of farmed species, improve coloration and quality of fillet. Microalgae has the highest areal biomass productivities among photosynthetic organisms, including fodder crops, and thus has a high commercial potential. Also, microalgal production has a low water and arable-land footprint, making microalgal-based feed environmentally sustainable. This review paper will explore the potential of producing microalgae biomass as an ingredient of aquaculture feed.


Asunto(s)
Microalgas , Alimentación Animal/análisis , Animales , Acuicultura , Ecosistema , Peces , Humanos
7.
Bioresour Technol ; 295: 122310, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31670114

RESUMEN

The feasibility of substituting 50% nutrients by aqueous phase liquid (APL), derived from hydrothermal liquefaction of Tetraselmis sp. biomass, in a semi-continuous cultivation of Tetraselmis sp. was studied. Growth experiments were conducted in indoor photobioreactor and outdoor raceway tank for three consecutive cycles. At the end of exponential growth pahse, 75% of the culture was harvested, and the supernatant was returned to the cultivation system. For control cultures, fresh nutrients were added; however, for the experimental cultures, an appropriate volume of APL was added to replace half of the nutrients. Either indoor or outdoor, the growth rate and biomass yield in APL-added cultures were either equal or slightly better compared to control culture; although APL had little to no effect on the metabolite content of Tetraselmis sp., metabolites profile of Tetraselmis sp. varied between APL-added and control cultures. Nevertheless, 50% nutrients requirements for microalgae cultivation could be replaced by APL.


Asunto(s)
Chlorophyta , Microalgas , Biomasa , Estudios de Factibilidad , Nutrientes , Temperatura
8.
Sci Total Environ ; 715: 136775, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32040991

RESUMEN

Hydrothermal Liquefaction (HTL) could be a promising and better alternative to other techniques for energy recovery from municipal sewage sludge (MSS). However, the nutrients (i.e., N, and P) recovery potential from the byproducts, generated in the HTL of MSS, needs to be studied so that a comprehensive sludge management practice could be adopted. In this study, HTL process temperature (275-400 °C), and reaction time (30-120 min) were first investigated for biocrude yield and release of the nutrients to the aqueous phase liquid (APL) and biochar. The maximum energy recovery (i.e., 59%) and maximum energy return on investment (i.e., 3.5) were obtained at 350 °C and 60 min of holding time. With the increase in HTL reaction time, the concentration of nitrogen in the APL increased (5.1 to 6.8 mg/L) while the concentration of phosphorus decreased (0.89 to 0.22 mg/L); the opposite was observed for the biochar. The nutrient recycling efficiency from the APL using microalgae was found to be strain-specific; nitrogen recycling efficiency by Picochlorum sp. and Chlorella sp. were 95.4 and 58.6%, respectively. The APL, derived from 1 kg MSS, could potentially produce 0.49 kg microalgal biomass. Since the concentrations of various metals in the biochar samples were substantially lower compared to their concentrations in raw MSS, the application of biochar as a soil conditioner could be very promising. Overall, net positive energy could be recovered from MSS using the HTL process, while the nutrients in the APL could be used to cultivate specific microalgae, and biochar could be applied to enhance the soil quality.


Asunto(s)
Aguas del Alcantarillado , Chlorella , Microalgas , Nutrientes , Reciclaje , Temperatura
9.
Bioresour Technol ; 293: 122057, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31491653

RESUMEN

In this study, the effect of culture salinity (4-6% NaCl) on the harvesting of two microalgal strains (i.e., Picochlorum sp., and Tetraselmis sp.) was investigated using pilot-scale TFF membranes. The cultures of these two strains were collected from their respective continuous cultivation in 2, 25,000 L raceway ponds. For both strains, an increase in culture salinity aggravated the membrane fouling and hence negatively influenced the permeate flux rate, biomass concentrating factor, and energy requirement in biomass harvesting. For the TFF membranes, an increase in 1% NaCl salinity, the volume of processed permeate reduced by 30-44 %, the energy consumption per unit volume of permeate increased by 3-63%, and the biomass concentrating factor reduced by 47-61%.


Asunto(s)
Chlorophyta , Microalgas , Biomasa , Estanques , Salinidad
10.
Bioresour Technol ; 284: 9-15, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30925427

RESUMEN

A halo-tolerant Tetraselmis sp. was grown in a 100,000 L raceway pond in the Qatari desert environment. As the biomass density reached 0.679 g/L, after 7 days, five different harvesting methods (i.e., cross-flow filtration, electrocoagulation, and coagulation-flocculation by FeCl3, NaOH, and alum) were applied to harvest the biomass. Hydrothermal liquefaction, for all the harvested biomass, was conducted at 350 °C for 30 mins in 10 mL Swagelok unions. The biocrude yield from cross-flow processed biomass (i.e., control) was 50.8%. Biocrude yield from electrocoagulation and alum processed biomass were 62.7% and 60.4% respectively where aluminum could have a catalytic effect. Biocrude yield from FeCl3 and NaOH processed biomass were 42.9% and 19.8% respectively. The total fraction of alkenes and alkanes was higher in the biocrude obtained from alum-harvested biomass, compared to other biocrude samples. However, the transition of metal species from biomass to biocrude was very low in all the biocrudes.


Asunto(s)
Biomasa , Chlorophyta/metabolismo , Biocatálisis , Temperatura
11.
Bioresour Technol ; 276: 35-41, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30611084

RESUMEN

In this study, a halotolerant Tetraselmis sp. was selected for 11-month outdoor semi-continuous cultivation in one sq. m raceway tank in the Qatari desert. A fraction of the culture was harvested using ferric chloride, and the growth media was returned to the tank. The recycling of culture media continued till the culture salinity reached 8% NaCl; 90% culture was then harvested, and the remaining culture fraction was used as inoculum for a new cultivation cycle. The growth of Tetraselmis sp. was not affected by incremental salinity although the intracellular metabolites varied; the average biomass productivity was 17.8 g/m2/d. Harvesting efficiency was slightly affected by the increase in salinity. Iron content in the harvested biomass was in the range of 1.5-3.3%, and acidic solution (pH = 1.48) was able to recover 91.3% iron from the harvested biomass. Nonetheless, Tetraselmis sp. could be grown continuously throughout the year in Qatar's climate condition.


Asunto(s)
Chlorophyta/crecimiento & desarrollo , Cloruro de Sodio/farmacología , Adaptación Fisiológica , Chlorophyta/efectos de los fármacos , Chlorophyta/metabolismo , Medios de Cultivo , Qatar , Reciclaje , Salinidad
13.
Anesth Essays Res ; 10(3): 591-596, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27746557

RESUMEN

BACKGROUND AND AIMS: Early extubation is a desirable goal after general anesthesia. Very few studies have compared the effect of bispectral index (BIS) monitoring versus standard end-tidal anesthetic gas (ETAG) concentration monitoring on tracheal extubation time for halothane-based anesthesia. The aim of this study was to compare the effect of BIS versus ETAG-guided anesthesia on time to tracheal extubation for halothane-based anesthesia in general surgical setting. METHODS: This was a randomized, controlled double-blind study. Sixty patients with the American Society of Anesthesiologists physical status Class 1 or 2, receiving halothane-based general anesthesia were randomized to BIS-guided (n = 30) and ETAG-guided anesthesia (n = 30). Time to tracheal extubation was measured. In BIS group, BIS value was kept between 40 and 60 while in ETAG group; ETAG value was kept between 0.7 and 1.3 minimum alveolar concentration. The two groups were compared using Student's t-test, and P < 0.05 was considered statistically significant. Data were processed and analyzed using SPSS version 17 software. RESULTS: Mean time to tracheal extubation was significantly longer in BIS group (9.63 ± 3.02 min) as compared to ETAG group (5.29 ± 1.51 min), mean difference 4.34 min with 95% confidence interval (3.106, 5.982) (P < 0.05). CONCLUSION: In our study, the extubation time was significantly longer in BIS-guided anesthesia as compared to ETAG-guided anesthesia. ETAG monitoring promotes earlier extubation of patients as compared to BIS monitoring during halothane anesthesia.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda