Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Parasitol Res ; 122(4): 927-937, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36786888

RESUMEN

Toxoplasmosis is an immunologically complex disease, particularly in immunocompromised patients. Although there are several therapeutic regimens for such disease, the majority of them have many drawbacks. Therefore, it is of utmost importance to improve the current regimen in an effort to achieve a well-tolerated therapy while also enhancing the host immune response. Famous for their immunomodulatory effect, Lactobacillus delbrueckii and Lactobacillus fermentum probiotics were chosen to be evaluated in this study as an adjuvant therapy against the virulent RH Toxoplasma gondii (T. gondii) strain. Experimental mice were divided into control and treated groups. The control group was further subdivided into two groups: group I: 10 uninfected mice and group II: 20 infected untreated mice. The treated experimental group was subdivided into three groups (20 mice each); group III: sulfamethoxazole-trimethoprim (SMZ-TMP) treated, group IV: probiotics treated, and group V: SMZ-TMP combined with probiotics. The results obtained revealed that combined therapy increased survival rate and time up to 95% and 16 days, respectively, with an 82% reduction of tachyzoites and marked distortion, as detected by the scanning electron microscope (SEM). Additionally, combined therapy alleviated the severity and the extent of the inflammatory cells' infiltration, thereby reducing hepatocyte degeneration. Intriguingly, serum IF-γ level showed a significant increase to 155.92 ± 10.12 ng/L with combined therapy, reflecting the immunological role of the combined therapy. The current results revealed that probiotics have a high adjuvant potential in alleviating the impact of toxoplasmosis. Using probiotics as a synergistic treatment to modulate conventional therapy in systemic toxoplasmosis may gain popularity due to their low cost and current availability.


Asunto(s)
Lactobacillus delbrueckii , Limosilactobacillus fermentum , Probióticos , Toxoplasma , Toxoplasmosis Animal , Toxoplasmosis , Animales , Ratones , Toxoplasmosis/tratamiento farmacológico , Combinación Trimetoprim y Sulfametoxazol/uso terapéutico , Toxoplasmosis Animal/tratamiento farmacológico
2.
Inflammopharmacology ; 31(6): 3101-3114, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37389660

RESUMEN

BACKGROUND: Inflammatory autoimmune arthritis like that present in rheumatoid arthritis (RA) is treated by medications with many side effects. This study was a trial to benefit from Toxoplasma immune-modulatory effects on its host to treat arthritis in rat model resembling joints affection of RA. To avoid hazards of infection, Toxoplasma lysate antigen (TLA) was given instead of the whole infection, in addition to giving its encapsulated niosomes form, assuming that it would enhance the effect of TLA alone, to compare effects of both on disease activity with that of prednisolone. METHODS: Swiss albino rats were divided into 6 groups: normal control group and the remaining 5 groups were injected by CFA adjuvant to induce arthritis; one of those groups was the untreated model. Each of the other groups received one of the following (TLA, TLA-encapsulated niosomes, prednisolone or niosomes) for comparison of their results. Inflammatory markers measured at the end of the experiment were: interleukin 17 (IL-17), IL-10 and CRP by ELISA technique; histopathological assessment of the biopsied hind paw joints was done and also, Janus kinase 3 (JAK3) expression was assessed by immunohistochemistry. RESULTS: TLA and TLA-encapsulated niosomes both mitigated the signs of clinical and histopathological arthritis and were having anti-inflammatory effects (decreased CRP, IL-17 and JAK3 expressions, while increased IL-10 levels) with better effects in TLA-encapsulated niosomes-treated RA group, both groups' results were comparable to prednisolone. Niosomes also gave some anti-inflammatory effects but were mild in comparison to TLA and TLA-encapsulated niosomes. CONCLUSION: Vaccination with both TLA and TLA-encapsulated niosomes for the first time in adjuvant-induced arthritis ameliorated the disease through diversion of immune system and JAK3 downregulation. Both vaccinations should be further tested to evaluate the possibility of their introduction for disease treatment and in other autoimmune diseases.


Asunto(s)
Artritis Experimental , Artritis , Toxoplasma , Ratas , Animales , Interleucina-10 , Interleucina-17 , Liposomas , Janus Quinasa 3 , Regulación hacia Abajo , Antígenos de Protozoos , Vacunación , Prednisolona , Antiinflamatorios , Artritis Experimental/tratamiento farmacológico
3.
Rev Biol Trop ; 64(4): 1747-57, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29465950

RESUMEN

Schistosomiasis remains a disease of major global public health concern since it is a chronic and debilitating illness. The widely distributed Schistosoma mansoni that causes intestinal schistosomiasis represents a great threat. Its world-wide distribution is permitted by the broad geographic range of the susceptible species of its intermediate host, Biomphalaria, which serves as an obligatory host for the larval stage, at which humans get infected. The objectives were to identify the proteins responsible for the snails' compatibility outcome through differentiation between the total proteins among Biomphalaria alexandrina snails at different ages. The work was conducted on snails that differ in age and genetic backgrounds. Four subgroups (F1) from the progeny of self-reproduced susceptible and resistant snails (F0) were studied. Infection rates of these subgroups (young susceptible, adult susceptible, young resistant and adult resistant) were 90 %, 75 %, 40 % and 0 %, respectively. Using Sodium Dodecyl Sulphate Polyacrylamide Gel electrophoresis (SDS-PAGE), differences in protein expression were evaluated between adult and young snails of different subgroups. Dice similarity coefficient was calculated to determine the percentage of band sharing among the experimental subgroups. The results showed that the combination of similarities between age and compatibility status of the snails, lead to the highest similarity coefficient, followed by the combination of similarities of both genetic origin and age, even though they differ in the compatibility status. On the other hand, the differences in the genetic background, age and compatibility status, lead to the least similarity index. It was also found that the genetic background in young snails plays a major role in the determination of their compatibility, while the internal defense system has the upper hand in determining the level of adult compatibility. In conclusion, the findings of the present work highlight the great impact of the snail age in concomitance with the genetics and the internal defense in the determination of B. alexandrina/S.mansoni compatibility. Future works are recommended, as further characterization of the shared protein bands among the studied subgroups is needed to clarify their role in host-parasite relationship.


Asunto(s)
Biomphalaria/química , Biomphalaria/parasitología , Proteínas/análisis , Esquistosomiasis mansoni/parasitología , Factores de Edad , Animales , Biomarcadores/análisis , Biomphalaria/genética , Electroforesis en Gel de Poliacrilamida , Interacciones Huésped-Parásitos , Peso Molecular , Proteínas/genética , Valores de Referencia , Esquistosomiasis mansoni/genética
4.
Saudi J Biol Sci ; 28(4): 2491-2501, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33935570

RESUMEN

INTRODUCTION AND AIM: Blastocystis is a common enteric parasite, having a worldwide distribution. Many antimicrobial agents are effective against it, yet side effects and drug resistance have been reported. Thus, ongoing trials are being conducted for exploring anti-Blastocystis alternatives. Proteases are attractive anti-protozoal drug targets, having documented roles in Blastocystis. Serine proteases are present in both hepatitis C virus and Blastocystis. Since drug repositioning is quite trendy, the in vitro efficacy of simeprevir (SMV), an anti-hepatitis serine protease inhibitor, against Blastocystis was investigated in the current study. METHODS: Stool samples were collected from patients, Alexandria, Egypt. Concentrated stools were screened using direct smears, trichrome, and modified Ziehl-Neelsen stains to exclude parasitic co-infections. Positive stool isolates were cultivated, molecularly subtyped for assessing the efficacy of three SMV doses (100,150, and 200 µg/ml) along 72 hours (h), on the most common subtype, through monitoring parasite growth, viability, re-culture, and also via ultrastructure verification. The most efficient dose and duration were later tested on other subtypes. RESULTS: Results revealed that Blastocystis was detected in 54.17% of examined samples. Molecularly, ST3 predominated (62%), followed by ST1 (8.6%) and ST2 (3.4%). Ascending concentrations of SMV progressively inhibited growth, viability, and re-culture of treated Blastocystis, with a non-statistically significant difference when compared to the therapeutic control metronidazole (MTZ). The most efficient dose and duration against ST3 was 150 µg/ml for 72 h. This dose inhibited the growth of ST3, ST1, and ST2 with percentages of 95.19%, 94.83%, and 94.74%, successively and viability with percentages of 98.30%, 98.09%, and 97.96%, successively. This dose abolished Blastocystis upon re-culturing. Ultra-structurally, SMV induced rupture of Blastocystis cell membrane leading to necrotic death, versus the reported apoptotic death caused by MTZ. In conclusion, 150 µg/ml SMV for 72 h proved its efficacy against ST1, ST2, and ST3 Blastocystis, thus sparing the need for pre-treatment molecular subtyping in developing countries.

5.
Saudi J Biol Sci ; 28(1): 427-439, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33424326

RESUMEN

INTRODUCTION AND AIM: Considering the magnitude of giardiasis problem, the side-effects of the used anti-giardia drugs and the resistance posed against them, the current study aimed to evaluate the in-vivo giardicidal effect of Psidium guajava leaf extract (PGLE). METHODS: For fulfilling this aim, five Swiss-albino mice groups were included; GI: non-infected, GII: Giardia-infected and non-treated, GIII: Giardia-infected and metronidazole-treated, GIV: Giardia-infected and PGLE-treated, and GV: Giardia-infected and treated with both metronidazole and PGLE. Treatment efficacy was assessed via; Giardia cyst viability and trophozoite count, trophozoite electron microscopic ultrastructure, duodenal histopathological scoring, immunohistochemistry for TNF-α and duodenal scanning electron microscopy. Moreover, mice serum liver enzymes, total bilirubin, albumin, lipid profile including; total cholesterol, HDL, LDL and triglycerides were assessed. Additionally, hepatic oxidative stress markers including; malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH) and superoxide dismutase (SOD) were measured. RESULTS: Results showed that PGLE whether alone or combined with metronidazole has induced significant trophozoite count reduction and major architectural changes. Duodenal histological improvement, and local protective anti-inflammatory effect were confirmed. PGLE has also helped in healing of Giardia-induced gut atrophy. Thus, offered a comprehensive therapy for both the pathogen and the resultant pathological sequalae. Serum markers showed favorable hepatoprotective effect. Total cholesterol, LDL and triglycerides levels were less in PGLE-treated group than in metronidazole-treated group. Hepatic oxidative stress markers revealed the promising extract antioxidant effect. This study highlights, the promising in-vivo giardicidal PGLE activity, that was comparable to metronidazole, thus, the extract would be an ideal strongly recommended treatment for giardiasis. When combined with metronidazole, the extract potentiated its therapeutic effect. Besides, having hepatoprotective, anti-inflammatory, and antioxidant properties, the extract can combat the major side effects of metronidazole therapy.

6.
Rev. biol. trop ; Rev. biol. trop;64(4): 1747-1757, oct.-dic. 2016. tab, ilus
Artículo en Inglés | LILACS | ID: biblio-958248

RESUMEN

Abstract:Schistosomiasis remains a disease of major global public health concern since it is a chronic and debilitating illness. The widely distributed Schistosoma mansoni that causes intestinal schistosomiasis represents a great threat. Its world-wide distribution is permitted by the broad geographic range of the susceptible species of its intermediate host, Biomphalaria, which serves as an obligatory host for the larval stage, at which humans get infected. The objectives were to identify the proteins responsible for the snails' compatibility outcome through differentiation between the total proteins among Biomphalaria alexandrina snails at different ages. The work was conducted on snails that differ in age and genetic backgrounds. Four subgroups (F1) from the progeny of self-reproduced susceptible and resistant snails (F0) were studied. Infection rates of these subgroups (young susceptible, adult susceptible, young resistant and adult resistant) were 90 %, 75 %, 40 % and 0 %, respectively. Using Sodium Dodecyl Sulphate Polyacrylamide Gel electrophoresis (SDS-PAGE), differences in protein expression were evaluated between adult and young snails of different subgroups. Dice similarity coefficient was calculated to determine the percentage of band sharing among the experimental subgroups. The results showed that the combination of similarities between age and compatibility status of the snails, lead to the highest similarity coefficient, followed by the combination of similarities of both genetic origin and age, even though they differ in the compatibility status. On the other hand, the differences in the genetic background, age and compatibility status, lead to the least similarity index. It was also found that the genetic background in young snails plays a major role in the determination of their compatibility, while the internal defense system has the upper hand in determining the level of adult compatibility. In conclusion, the findings of the present work highlight the great impact of the snail age in concomitance with the genetics and the internal defense in the determination of B. alexandrina/S.mansoni compatibility. Future works are recommended, as further characterization of the shared protein bands among the studied subgroups is needed to clarify their role in host-parasite relationship. Rev. Biol. Trop. 64 (4): 1747-1757. Epub 2016 December 01.


Resumen:La esquistosomiasis es una enfermedad crónica y debilitante que constituye una problemática de salud pública a nivel mundial. Debido a que Schistosoma mansoni está ampliamente distribuida y a que es el causante de la esquistosomiasis intestinal representa una gran amenaza. Biomphalaria es el hospedero intermedio y obligatorio para el estado larval, presenta una amplia distribución geográfica e infecta al ser humano. El objetivo fue identificar las proteínas responsables del efecto de compatibilidad en caracoles Biomphalaria alexandrina de distintos estadios a través de la diferenciación del total de proteínas en ellos. La investigación se llevó a cabo con caracoles de diferentes edades y antecedentes genéticos. Se estudiaron cuatro subgrupos (F1) de la progenie de caracoles susceptibles y resistentes reproducidos asexualmente (F0). Las tasas de infección de estos subgrupos (juvenil susceptible, adulto susceptible, juvenil resistente, adulto resistente) fueron 90 %, 75 %, 40 % y 0 %, respectivamente. Con la electroforesis en gel de poliacrilamida en presencia de dodecilsulfato sódico (SDS-PAGE) se evaluaron las diferencias en la expresión proteica entre los caracoles juveniles y adultos de los distintos subgrupos. Se calculó el coeficiente de similitud de Dice para determinar el porcentaje de bandas compartidas entre los subgrupos experimentales. Los resultados mostraron que la combinación de similitudes entre la edad y el estado de compatibilidad de los caracoles genera el mayor coeficiente de similitud seguido por el de la combinación de similitudes tanto de la edad como del origen genético aunque varían en el estado de compatibilidad. Por otra parte, las diferencias en los antecedentes genéticos, la edad y el estado de compatibilidad generan el índice de similitud más bajo. También se encontró que el antecedente genético en caracoles juveniles es importante en la determinación de su compatibilidad, mientras que el sistema de defensa interno es el que determina el nivel de compatibilidad en adultos. En conclusión, los resultados de este trabajo resaltan la importancia de la edad del caracol en conjunto con la genética y la defensa interna para determinar la compatibilidad de B. alexandrina/S.mansoni. Se recomienda realizar futuros trabajos así como una mayor caracterización de las bandas proteicas compartidas entre los subgrupos estudiados para esclarecer su papel en la relación hospedero-parásito.


Asunto(s)
Animales , Biomphalaria/parasitología , Biomphalaria/química , Esquistosomiasis mansoni/parasitología , Proteínas/análisis , Valores de Referencia , Biomphalaria/genética , Biomarcadores/análisis , Proteínas/genética , Factores de Edad , Electroforesis en Gel de Poliacrilamida , Interacciones Huésped-Parásitos , Peso Molecular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda