Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biotechnol Bioeng ; 121(1): 53-70, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37691172

RESUMEN

Recombinant adeno-associated virus (rAAV) is rapidly emerging as the preferred delivery vehicle for gene therapies, with promising advantages in safety and efficacy. Key challenges in systemic in-vivo rAAV gene therapy applications are the gap in production capabilities versus potential market demand and complex production process. This review summarizes current available information on rAAV upstream manufacturing processes and proposed optimizations for production. The advancements in rAAV production media were reviewed with proposals to speed up the cell culture process development. Furthermore, major methods for genetic element delivery to host cells were summarized with their advantages, limitations, and future directions for optimization. In addition, culture vessel selection criteria were listed based on production cell system, scale, and development stage. Process control at the production step was also outlined with an in-depth understanding of production kinetics and quality control.


Asunto(s)
Dependovirus , Vectores Genéticos , Vectores Genéticos/genética , Dependovirus/genética , Técnicas de Cultivo de Célula , Terapia Genética
2.
Biotechnol Bioeng ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101569

RESUMEN

Transient gene expression (TGE) in Chinese hamster ovary (CHO) cells offers a route to accelerate biologics development by delivering material weeks to months earlier than what is possible with conventional cell line development. However, low productivity, inconsistent product quality profiles, and scalability challenges have prevented its broader adoption. In this study, we develop a scalable CHO-based TGE system achieving 1.9 g/L of monoclonal antibody in an unmodified host. We integrated continuous flow-electroporation and alternate tangential flow (ATF) perfusion to enable an end-to-end closed system from N-1 perfusion to fed-batch 50-L bioreactor production. Optimization of both the ATF operation for three-in-one application-cell growth, buffer exchange, and cell mass concentration-and the flow-electroporation process, led to a platform for producing biotherapeutics using transiently transfected cells. We demonstrate scalability up to 50-L bioreactor, maintaining a titer over 1 g/L. We also show comparable quality between both transiently and stably produced material, and consistency across batches. The results confirm that purity, charge variants and N-glycan profiles are similar. Our study demonstrates the potential of CHO-based TGE platforms to accelerate biologics process development timelines and contributes evidence supporting its feasibility for manufacturing early clinical material, aiming to strengthen endorsement for TGE's wider implementation.

3.
Biotechnol Bioeng ; 117(6): 1684-1695, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32086806

RESUMEN

There are three main potential sources for cell shear damage existing in stirred tank bioreactors. One is the potential high energy dissipation in the immediate impeller zones; another from small gas bubble burst; and third is from high gas entrance velocity (GEV) emitting from the sparger. While the first two have been thoroughly addressed for the scale-up of Chinese hamster ovary (CHO) cell culture knowing that a wide tolerable agitation range with non-damaging energy dissipation exists and the use of shear protectants like Pluronic F68 guard against cell damage caused by bubble burst, GEV remains a potential scale-up problem across scales for the drilled hole or open pipe sparger designs. GEV as high as 170 m/s due to high gas flow rates and relatively small sparger hole diameters was observed to be significantly detrimental to cell culture performance in a 12,000 L bioreactor when compared to a satellite 2 L bioreactor run with GEV of <1 m/s. Small scale study of GEV as high as 265 m/s confirmed this. Based on the results of this study, a critical GEV of >60 m/s for CHO cells is proposed, whereas previously 30 m/s has been reported for NS0 cells by Zhu, Cuenca, Zhou, and Varma (2008. Biotechnol. Bioeng., 101, 751-760). Implementation of new large scale spargers with larger diameter and more holes lowered GEV and helped improve the cell culture performance, closing the scale-up gap. Design of such new spargers was even more critical when hole plugging was discovered during large scale cultivation hence exacerbating the GEV impact. Furthermore, development of a scale down model based on mimicry of the large scale GEV profile as a function of time was proven to be beneficial for reproducing large scale results.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula/métodos , Gases/análisis , Animales , Apoptosis , Biotecnología/instrumentación , Biotecnología/métodos , Células CHO , Técnicas de Cultivo de Célula/instrumentación , Cricetulus , Cinética
4.
J Ind Microbiol Biotechnol ; 44(4-5): 785-797, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28185098

RESUMEN

The emergence of natural products and industrial microbiology nearly eight decades ago propelled an era of bioprocess innovation. Half a century later, recombinant protein technology spurred the tremendous growth of biologics and added mammalian cells to the forefront of industrial producing cells in terms of the value of products generated. This review highlights the process technology of natural products and protein biologics. Despite the separation in time, there is a remarkable similarity in their progression. As the new generation of therapeutics for gene and cell therapy emerges, its process technology development can take inspiration from that of natural products and biologics.


Asunto(s)
Factores Biológicos/biosíntesis , Productos Biológicos/metabolismo , Biotecnología/métodos , Técnicas de Cultivo de Célula/métodos , Microbiología Industrial/métodos , Animales , Biotecnología/tendencias , Humanos , Microbiología Industrial/tendencias , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
5.
J Biotechnol ; 387: 79-88, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38582408

RESUMEN

Among all the operating parameters that control the cell culture environment inside bioreactors, appropriate mixing and aeration are crucial to ensure sufficient oxygen supply, homogeneous mixing, and CO2 stripping. A model-based manufacturing facility fit approach was applied to define agitation and bottom air flow rates during the process scale-up from laboratory to manufacturing, of which computational fluid dynamics (CFD) was the core modeling tool. The realizable k-ε turbulent dispersed Eulerian gas-liquid flow model was established and validated using experimental values for the volumetric oxygen transfer coefficient (kLa). Model validation defined the process operating parameter ranges for application of the model, identified mixing issues (e.g., impeller flooding, dissolved oxygen gradients, etc.) and the impact of antifoam on kLa. Using the CFD simulation results as inputs to the models for oxygen demand, gas entrance velocity, and CO2 stripping aided in the design of the agitation and bottom air flow rates needed to meet cellular oxygen demand, control CO2 levels, mitigate risks for cell damage due to shear, foaming, as well as fire hazards due to high O2 levels in the bioreactor gas outlet. The recommended operating conditions led to the completion of five manufacturing runs with a 100% success rate. This model-based approach achieved a seamless scale-up and reduced the required number of at-scale development batches, resulting in cost and time savings of a cell culture commercialization process.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula , Hidrodinámica , Oxígeno , Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo de Célula/instrumentación , Oxígeno/metabolismo , Oxígeno/análisis , Dióxido de Carbono/metabolismo , Simulación por Computador , Células CHO , Cricetulus , Modelos Biológicos , Animales
6.
Biotechnol Prog ; 40(4): e3446, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38415506

RESUMEN

Recent optimizations of cell culture processes have focused on the final seed scale-up step (N - 1 stage) used to inoculate the production bioreactor (N-stage bioreactor) to enable higher inoculation cell densities (2-20 × 106 cells/mL), which could shorten the production culture duration and/or increase the volumetric productivity. N - 1 seed process intensification can be achieved by either non-perfusion (enriched-batch or fed-batch) or perfusion culture to reach those higher final N - 1 viable cell densities (VCD). In this study, we evaluated how different N - 1 intensification strategies, specifically enriched-batch (EB) N - 1 versus perfusion N - 1, affect cell growth profiles and monoclonal antibody (mAb) productivity in the final N-stage production bioreactor operated in fed-batch mode. Three representative Chinese Hamster Ovary (CHO) cell lines producing different mAbs were cultured using either EB or perfusion N - 1 seeds and found that the N-stage cell growth and mAb productivities were comparable between EB N - 1 and perfusion N - 1 conditions for two of the cell lines but were very different for the third. In addition, within the two similar cell growth cell lines, differences in cell-specific productivity were observed. This suggests that the impact of the N - 1 intensification process on production was cell-line dependent. This study revealed that the N - 1 intensification strategy and the state of seeds from the different N - 1 conditions may affect the outcome of the N production stage, and thus, the choice of N - 1 intensification strategy could be a new target for future upstream optimization of mAb production.


Asunto(s)
Anticuerpos Monoclonales , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Cricetulus , Células CHO , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/metabolismo , Técnicas de Cultivo Celular por Lotes/métodos , Cricetinae , Proliferación Celular , Recuento de Células
7.
Biotechnol Prog ; : e3477, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38699906

RESUMEN

Media preparation parameters contribute significantly to media quality, cell culture performance, productivity, and product quality. Establishing proper media preparation procedures is critical for ensuring a robust CHO cell culture process. Process analytical technology (PAT) enables unique ways to quantify assessments and improve media quality. Here, cell culture media were prepared under a wide range of temperatures (40-80°C) and pH (7.6-10.0). Media quality profiles were compared using three real-time PATs: Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, and excitation-emission matrix (EEM) spectroscopy. FTIR and Raman spectroscopies identified shifts in media quality under high preparation temperature (80°C) and at differing preparation pH which negatively impacted monoclonal antibody (mAb) production. In fed-batch processes for production of three different mAbs, viable cell density (VCD) and cell viability were mostly unaffected under all media preparation temperatures, while titer and cell specific productivity of mAb decreased when cultured in basal and feed media prepared at 80°C. High feed preparation pH alone was tolerated but cell growth and productivity profiles deviated from the control condition. Further, charge variants (main, acidic, basic species) and glycosylation (G0F, afucosylation, and high mannose) were examined. Statistically significant differences were observed for one or more of these quality attributes with any shifts in media preparation. In this study, we demonstrated strong associations between media preparation conditions and cell growth, productivity, and product quality. The rapid evaluation of media by PAT implementation enabled more comprehensive understanding of different parameters on media quality and consequential effects on CHO cell culture.

8.
Biotechnol J ; 19(3): e2300473, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38528367

RESUMEN

The use of hybrid models is extensively described in the literature to predict the process evolution in cell cultures. These models combine mechanistic and machine learning methods, allowing the prediction of complex process behavior, in the presence of many process variables, without the need to collect a large amount of data. Hybrid models cannot be directly used to predict final product critical quality attributes, or CQAs, because they are usually measured only at the end of the process, and more mechanistic knowledge is needed for many classes of CQAs. The historical models can instead predict the CQAs better; however, they cannot directly relate manipulated process parameters to final CQAs, as they require knowledge of the process evolution. In this work, we propose an innovative modeling approach based on combining a hybrid propagation model with a historical data-driven model, that is, the combined hybrid model, for simultaneous prediction of full process dynamics and CQAs. The performance of the combined hybrid model was evaluated on an industrial dataset and compared to classical black-box models, which directly relate manipulated process parameters to CQAs. The proposed combined hybrid model outperforms the black-box model by 33% on average in predicting the CQAs while requiring only around half of the data for model training to match performance. Thus, in terms of model accuracy and experimental costs, the combined hybrid model in this study provides a promising platform for process optimization applications.


Asunto(s)
Técnicas de Cultivo de Célula , Aprendizaje Automático
9.
Biotechnol Prog ; 40(3): e3438, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38415431

RESUMEN

Fucosylation is an important quality attribute for therapeutic antibodies. Afucosylated antibodies exhibit higher therapeutic efficacies than their fucosylated counterparts through antibody-dependent cellular cytotoxicity (ADCC) mechanism. Since higher potency is beneficial in reducing dose or duration of the treatment, afucosylated antibodies have attracted a great deal of interest in biotherapeutics development. In this study, novel small molecules GDP-D-Rhamnose and its derivatives (Ac-GDP-D-Rhamnose and rhamnose sodium phosphate) were synthesized to inhibit the enzyme in the GDP-fucose synthesis pathway. Addition of these compounds into cell culture increased antibody afucosylation levels in a dose-dependent manner and had no significant impact on other protein quality attributes. A novel and effective mechanism to generate afucosylated antibody is demonstrated for biologics discovery, analytical method development, process development, and other applications.


Asunto(s)
Cricetulus , Fucosa , Fucosa/metabolismo , Fucosa/química , Animales , Células CHO , Glicosilación , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/biosíntesis , Ramnosa/química , Ramnosa/metabolismo , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Humanos , Guanosina Difosfato Fucosa/metabolismo , Guanosina Difosfato Fucosa/química
10.
Biotechnol Prog ; : e3493, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953182

RESUMEN

Total sialic acid content (TSA) in biotherapeutic proteins is often a critical quality attribute as it impacts the drug efficacy. Traditional wet chemical assays to quantify TSA in biotherapeutic proteins during cell culture typically takes several hours or longer due to the complexity of the assay which involves isolation of sialic acid from the protein of interest, followed by sample preparation and chromatographic based separation for analysis. Here, we developed a machine learning model-based technology to rapidly predict TSA during cell culture by using typically measured process parameters. The technology features a user interface, where the users only have to upload cell culture process parameters as input variables and TSA values are instantly displayed on a dashboard platform based on the model predictions. In this study, multiple machine learning algorithms were assessed on our dataset, with the Random Forest model being identified as the most promising model. Feature importance analysis from the Random Forest model revealed that attributes like viable cell density (VCD), glutamate, ammonium, phosphate, and basal medium type are critical for predictions. Notably, while the model demonstrated strong predictability by Day 14 of observation, challenges remain in forecasting TSA values at the edges of the calibration range. This research not only emphasizes the transformative power of machine learning and soft sensors in bioprocessing but also introduces a rapid and efficient tool for sialic acid prediction, signaling significant advancements in bioprocessing. Future endeavors may focus on data augmentation to further enhance model precision and exploration of process control capabilities.

11.
Biotechnol Prog ; 39(3): e3330, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36751946

RESUMEN

Single-use bioreactors (SUBs, or disposable bioreactors) are extensively used for the clinical and commercial production of biologics. Despite widespread application, minimal results have been reported utilizing the turndown ratio; an operation mode where the working range of the bioreactor can be expanded to include low fluid volumes. In this work, a systematic investigation into free surface mass transfer and cell growth in high turndown single-use bioreactors is presented. This approach, which combines experimental mass transfer measurements with numerical simulation, deconvolutes the combined effects of headspace mixing and the free surface convective mass transfer on cell growth. Under optimized conditions, mass transfer across the interface alone may be sufficient to satisfy oxygen demands of the cell culture. Within the context of high turndown bioreactors, this finding provides a counterpoint to traditional sparge-based bioreactor operational philosophy. Multiple monoclonal antibody-producing cell lines grown using this high turndown approach showed similar viable cell densities to those cells expanded using a traditional cell bag rocker. Furthermore, cells taken directly from the turndown expansion and placed into production showed identical growth characteristics to traditionally expanded cultures. Taken together, these results suggest that the Xcellerex SUB can be run at a 5:1 working volume as a seed to itself, with no need for system modifications, potentially simplifying preculture operations.


Asunto(s)
Reactores Biológicos , Anticuerpos Monoclonales/biosíntesis , Línea Celular , Simulación por Computador
12.
Biotechnol J ; 18(7): e2200604, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37029472

RESUMEN

Core fucosylation is a highly prevalent and significant feature of N-glycosylation in therapeutic monoclonal antibodies produced by mammalian cells where its absence (afucosylation) plays a key role in treatment safety and efficacy. Notably, even slight changes in the level of afucosylation can have a considerable impact on the antibody-dependent cell-mediated cytotoxicity. Therefore, implementing control over afucosylation levels is important in upstream manufacturing to maintain consistent quality across batches of product, since standard downstream processing does not change afucosylation. In this review, the influences and strategies to control afucosylation are presented. In particular, there is emphasis on upstream manufacturing culture parameters and media supplementation, as these offer particular advantages as control strategies over alternative approaches such as cell line engineering and chemical inhibitors. The review discusses the relationship between the afucosylation influences and the underlying cellular metabolism to promote increased process understanding. Also, briefly highlighted is the value of empirical and mechanistic models in evaluating and designing control methods for core fucosylation.


Asunto(s)
Anticuerpos Monoclonales , Fucosa , Animales , Cricetinae , Anticuerpos Monoclonales/metabolismo , Fucosa/metabolismo , Línea Celular , Glicosilación , Citotoxicidad Celular Dependiente de Anticuerpos , Cricetulus , Células CHO
13.
MAbs ; 14(1): 2060724, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35380922

RESUMEN

As of early 2022, the coronavirus disease 2019 (COVID-19) pandemic remains a substantial global health concern. Different treatments for COVID-19, such as anti-COVID-19 neutralizing monoclonal antibodies (mAbs), have been developed under tight timelines. Not only mAb product and clinical development but also chemistry, manufacturing, and controls (CMC) process development at pandemic speed are required to address this highly unmet patient need. CMC development consists of early- and late-stage process development to ensure sufficient mAb manufacturing yield and consistent product quality for patient safety and efficacy. Here, we report a case study of late-stage cell culture process development at pandemic speed for mAb1 and mAb2 production as a combination therapy for a highly unmet patient treatment. We completed late-stage cell culture process characterization (PC) within approximately 4 months from the cell culture process definition to the initiation of the manufacturing process performance qualification (PPQ) campaign for mAb1 and mAb2, in comparison to a standard one-year PC timeline. Different strategies were presented in detail at different PC steps, i.e., pre-PC risk assessment, scale-down model development and qualification, formal PC experiments, and in-process control strategy development for a successful PPQ campaign that did not sacrifice quality. The strategies we present may be applied to accelerate late-stage process development for other biologics to reduce timelines.


Asunto(s)
COVID-19 , Pandemias , Animales , Células CHO , COVID-19/prevención & control , Técnicas de Cultivo de Célula , Cricetinae , Cricetulus , Humanos
14.
Bioengineering (Basel) ; 9(4)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35447688

RESUMEN

Fed-batch process intensification with a significantly shorter culture duration or higher titer for monoclonal antibody (mAb) production by Chinese hamster ovary (CHO) cells can be achieved by implementing perfusion operation at the N-1 stage for biomanufacturing. N-1 perfusion seed with much higher final viable cell density (VCD) than a conventional N-1 batch seed can be used to significantly increase the inoculation VCD for the subsequent fed-batch production (referred as N stage), which results in a shorter cell growth phase, higher peak VCD, or higher titer. In this report, we incorporated a process analytical technology (PAT) tool into our N-1 perfusion platform, using an in-line capacitance probe to automatically adjust the perfusion rate based on real-time VCD measurements. The capacitance measurements correlated linearly with the offline VCD at all cell densities tested (i.e., up to 130 × 106 cells/mL). Online control of the perfusion rate via the cell-specific perfusion rate (CSPR) decreased media usage by approximately 25% when compared with a platform volume-specific perfusion rate approach and did not lead to any detrimental effects on cell growth. This PAT tool was applied to six mAbs, and a platform CSPR of 0.04 nL/cell/day was selected, which enabled rapid growth and maintenance of high viabilities for four of six cell lines. In addition, small-scale capacitance data were used in the scaling-up of N-1 perfusion processes in the pilot plant and in the GMP manufacturing suite. Implementing a platform approach based on capacitance measurements to control perfusion rates led to efficient process development of perfusion N-1 for supporting high-density CHO cell cultures for the fed-batch process intensification.

15.
Bioengineering (Basel) ; 9(4)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35447733

RESUMEN

Improving productivity to reduce the cost of biologics manufacturing and ensure that therapeutics can reach more patients remains a major challenge faced by the biopharmaceutical industry. Chinese hamster ovary (CHO) cell lines are commonly prepared for biomanufacturing by single cell cloning post-transfection and recovery, followed by lead clone screening, generation of a research cell bank (RCB), cell culture process development, and manufacturing of a master cell bank (MCB) to be used in early phase clinical manufacturing. In this study, it was found that an additional round of cloning and clone selection from an established monoclonal RCB or MCB (i.e., re-cloning) significantly improved titer for multiple late phase monoclonal antibody upstream processes. Quality attributes remained comparable between the processes using the parental clones and the re-clones. For two CHO cells expressing different antibodies, the re-clone performance was successfully scaled up at 500-L or at 2000-L bioreactor scales, demonstrating for the first time that the re-clone is suitable for late phase and commercial manufacturing processes for improvement of titer while maintaining comparable product quality to the early phase process.

16.
Biotechnol Prog ; 37(4): e3157, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33896120

RESUMEN

Cell lines used for the manufacture of recombinant proteins are expected to arise from a single cell as a control strategy to limit variability and ensure consistent protein production. Health authorities require a minimum of two rounds of limiting dilution cloning or its equivalent to meet the requirement of single cell origin. However, many legacy cell lines may not have been generated with process meeting this criteria potentially impeding the path to commercialization. A general monoclonality assessment strategy was developed based on using the site of plasmid integration for a cell's identity. By comparing the identities of subclones from a master cell bank (MCB) to each other and that of the MCB, a probability of monoclonality was established. Two technologies were used for cell identity, Southern blot and a PCR assay based on plasmid-genome junction sequences identified by splinkerette PCR. Southern blot analysis revealed that subclones may have banding patterns that differ from each other and yet indicate monoclonal origin. Splinkerette PCR identifies cellular sequence flanking the point(s) of plasmid integration. The two assays together provide complimentary data for cell identity that enables proper monoclonality assessment and establishes that the three legacy cell lines investigated are all of clonal origin.


Asunto(s)
Células Clonales , Línea Celular , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes , Estudios Retrospectivos
17.
Biotechnol Bioeng ; 107(1): 116-23, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20506364

RESUMEN

A recombinant monoclonal antibody produced by Chinese hamster ovary (CHO) cell fed-batch culture was found to have amino acid sequence misincorporation upon analysis by intact mass and peptide mapping mass spectrometry. A detailed analysis revealed multiple sites for asparagine were being randomly substituted by serine, pointing to mistranslation as the likely source. Results from time-course analysis of cell culture suggest that misincorporation was occurring midway through the fed-batch process and was correlated to asparagine reduction to below detectable levels in the culture. Separate shake flask experiments were carried out that confirmed starvation of asparagine and not excess of serine in the medium as the root cause of the phenomenon. Reduction in serine concentration under asparagine starvation conditions helped reduce extent of misincorporation. Supplementation with glutamine also helped reduce extent of misincorporation. Maintenance of asparagine at low levels in 2 L bench-scale culture via controlled supplementation of asparagine-containing feed eliminated the occurrence of misincorporation. This strategy was implemented in a clinical manufacturing process and scaled up successfully to the 200 and 2,000 L bioreactor scales.


Asunto(s)
Sustitución de Aminoácidos/fisiología , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Asparagina/química , Asparagina/metabolismo , Ingeniería de Proteínas/métodos , Serina/química , Serina/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus
18.
MAbs ; 12(1): 1763727, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32449878

RESUMEN

The importance of speed to clinic for medicines that may address unmet medical needs puts pressure on product development timelines. Historically, both toxicology and first-in-human clinical materials are generated using the same clonal-derived cells to ensure safety and minimize any development risks. However, cell line development with single cell cloning is time consuming, and aggravated by the time needed to screen for a lead clone based on cell line stability and manufacturability. In order to achieve faster timelines, we have used pools of up to six clones for earlier production of drug substance for regulatory filing-enabling toxicology studies, and then the final single clone was selected for production of clinical materials. This approach was enabled by using platform processes across all stages of early development, including expression vectors, host cell lines, media, and production processes. Through comprehensive cell culture and product quality analysis, we demonstrated that the toxicology material was representative of the clinical material for all six monoclonal antibody programs evaluated. Our extensive development experience further confirmed that using a pool of clones for toxicology material generation is a reliable approach to shorten the early development timeline.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Células Clonales/inmunología , Evaluación Preclínica de Medicamentos/métodos , Drogas en Investigación/metabolismo , Proteínas Recombinantes/inmunología , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/toxicidad , Células CHO , Células Clonales/efectos de los fármacos , Cricetinae , Cricetulus , Drogas en Investigación/uso terapéutico , Drogas en Investigación/toxicidad , Humanos , Proteínas Recombinantes/uso terapéutico , Proteínas Recombinantes/toxicidad , Pruebas de Toxicidad/métodos
19.
Biotechnol Prog ; 36(6): e3038, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32542945

RESUMEN

Glycoproteins could be highly sialylated, and controlling the sialic acid levels for some therapeutic proteins is critical to ensure product consistency and efficacy. N-acetylneuraminic acid (Neu5Ac, or NANA) and N-glycolylneuraminic acid (Neu5Gc, or NGNA) are the two most common forms of sialic acids produced in mammalian cells. As Neu5Gc is not produced in humans and can elicit immune responses, minimizing Neu5Gc formation is important in controlling this quality attribute for complex glycoproteins. In this study, a sialylated glycoprotein was used as the model molecule to study the effect of culture osmolality on Neu5Gc. A 14-day fed-batch process with osmolality maintained at physiological levels produced high levels of Neu5Gc. Increase of culture osmolality reduced the Neu5Gc level up to 70-80%, and the effect was proportional to the osmolality level. Through evaluating different osmolality conditions (300-450 mOsm/kg) under low or high pCO2 , we demonstrated that osmolality could be an effective process lever to modulate the Neu5Gc level. Potential mechanism of osmolality impact on Neu5Gc is discussed and is hypothesized to be cytosol NADH availability related. Compared with cell line engineering efforts, this simple process lever provides the opportunity to readily modulate the Neu5Gc level in a cell culture environment.


Asunto(s)
Glicoproteínas/biosíntesis , Ácidos Neuramínicos/metabolismo , Concentración Osmolar , Proteínas Recombinantes/biosíntesis , Animales , Células CHO , Técnicas de Cultivo de Célula/métodos , Membrana Celular/efectos de los fármacos , Cricetinae , Cricetulus , Glicoproteínas/genética , Humanos , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/farmacología , Proteínas Recombinantes/genética
20.
Biotechnol Adv ; 43: 107577, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32540474

RESUMEN

Mammalian cell cultures have been used extensively for production of recombinant protein therapeutics such as monoclonal antibodies, fusion proteins and enzymes for decades. Small molecules have been investigated as media supplements to improve process productivity and reduce cost of goods. Those chemicals can lead to significant yield improvement through different mechanisms such as cell cycle modulation, cellular redox regulation, etc. In addition to productivity, small molecules have also been routinely used to regulate post-translational modifications of recombinant proteins. This review summarizes key applications of small molecules in protein productivity improvement and product quality control.


Asunto(s)
Técnicas de Cultivo de Célula , Animales , Células CHO , Cricetinae , Cricetulus , Medios de Cultivo , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda