RESUMEN
OBJECTIVE: Crimean-Congo haemorrhagic fever (CCHF) is a severe zoonotic arboviral disease that occurs widely in Eastern and Western Europe, Asia and Africa. The disease is becoming of growing public health importance in Senegal. However, analysis of tick infestation, CCHF virus (CCHFV) circulation extent and risk factors during ongoing outbreak are scarce. A thorough outbreak investigation was carried out during a CCHF outbreak in Podor (Northern Senegal) in August 2022. METHODS: Ticks and blood samples were collected from animals (cattle, goats and sheep) randomly selected from confirmed CCHF human cases houses, neighbourhoods and surrounding villages. Blood samples were tested for CCHFV antibodies using a commercial enzyme-linked immunosorbent assay (ELISA) test. Tick samples were screened for CCHFV RNA by RT-PCR. RESULTS: Overall, tick infestation rate (TIR) and CCHFV seroprevalence of livestock were 52.12% (95% confidence interval (CI): 45.54%-58.64%) and 43.28% (95% CI: 36.33%-50.44%), respectively. The TIRs were 87.7% in cattle, 57.6% in sheep and 20.0% in goats. These rates were significantly associated with location, host species and tick control (p < 0.001) but not with animal age and sex (p > 0.7). CCHFV seroprevalence was 80.4% (95% CI: 67.57%-89.77%) in cattle, 35.4% (95% CI: 25.00%-47.01%) in sheep and 21.2% (95% CI: 12.11%-33.02%) in goats. Age, sex, location, animal host and presence of ticks were significantly associated to the presence of antibodies. The 950 ticks collected included among other species, Hyalomma impeltatum (48.84%) and H. rufipes (10.21%). Five pools of Hyalomma ssp. were found CCHFV RT-PCR positive. These infected ticks included 0.86% (4/464) of H. impeltatum collected on cattle and sheep and 1.03% (1/97) of H. rufipes collected on a sheep. CONCLUSIONS: To our knowledge, this is the first report on the extend of tick infestation and CCHFV infection in livestock during an outbreak in Senegal. The results highlight the risk of human infections and the importance of strengthening vector, animal and human surveillance as well as tick control measures in this area to prevent CCHF infections in humans.
Asunto(s)
Brotes de Enfermedades , Enfermedades de las Cabras , Cabras , Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Ganado , Enfermedades de las Ovejas , Garrapatas , Animales , Fiebre Hemorrágica de Crimea/epidemiología , Senegal/epidemiología , Virus de la Fiebre Hemorrágica de Crimea-Congo/aislamiento & purificación , Virus de la Fiebre Hemorrágica de Crimea-Congo/inmunología , Brotes de Enfermedades/veterinaria , Factores de Riesgo , Humanos , Ovinos , Garrapatas/virología , Enfermedades de las Ovejas/epidemiología , Enfermedades de las Ovejas/virología , Enfermedades de las Cabras/epidemiología , Enfermedades de las Cabras/virología , Bovinos , Ganado/virología , Masculino , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/virología , Femenino , Estudios Seroepidemiológicos , Infestaciones por Garrapatas/epidemiología , Infestaciones por Garrapatas/veterinaria , Prevalencia , Zoonosis/epidemiología , Anticuerpos Antivirales/sangreRESUMEN
Crimean-Congo hemorrhagic fever (CCHF), the most widespread tick-borne viral human infection, poses a threat to global health. In this study, clinical samples collected through national surveillance systems were screened for acute CCHF virus (CCHFV) infection using RT-PCR and for exposure using ELISA. For any CCHF-positive sample, livestock and tick samples were also collected in the neighborhood of the confirmed case and tested using ELISA and RT-PCR, respectively. Genome sequencing and phylogenetic analyses were also performed on samples with positive RT-PCR results. In Eastern Senegal, two human cases and one Hyalomma tick positive for CCHF were identified and a seroprevalence in livestock ranging from 9.33% to 45.26% was detected. Phylogenetic analyses revealed that the human strain belonged to genotype I based on the available L segment. However, the tick strain showed a reassortant profile, with the L and M segments belonging to genotype I and the S segment belonging to genotype III. Our data also showed that our strains clustered with strains isolated in different countries, including Mauritania. Therefore, our findings confirmed the high genetic variability inside the CCHF genotypes and their introduction to Senegal from other countries. They also indicate an increasing CCHF threat in Senegal and emphasize the need to reinforce surveillance using a one-health approach.