Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sci Rep ; 14(1): 12245, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806508

RESUMEN

Following the discovery of circulating tumor cells (CTCs) in the peripheral blood of cancer patients, CTCs were initially postulated to hold promise as a valuable prognostic tool through liquid biopsy. However, a decade and a half of accumulated data have revealed significant complexities in the investigation of CTCs. A challenging aspect lies in the reduced expression or complete loss of key epithelial markers during the epithelial-mesenchymal transition (EMT). This likely hampers the identification of a pathogenetically significant subset of CTCs. Nevertheless, there is a growing body of evidence regarding the prognostic value of such molecules as CD24 expressing in the primary breast tumor. Herewith, the exact relevance of CD24 expression on CTCs remains unclear. We used two epithelial markers (EpCAM and cytokeratin 7/8) to assess the count of CTCs in 57 breast cancer patients, both with (M0mts) and without metastasis (M0) during the follow-up period, as well as in M1 breast cancer patients. However, the investigation of these epithelial markers proved ineffective in identifying cell population expressing different combinations of EpCAM and cytokeratin 7/8 with prognostic significance for breast cancer metastases. Surprisingly, we found CD24+ circulating cells (CCs) in peripheral blood of breast cancer patients which have no epithelial markers (EpCAM and cytokeratin 7/8) but was strongly associated with distant metastasis. Namely, the count of CD45-EpCAM-CK7/8-CD24+ N-cadherin-CCs was elevated in both groups of patients, those with existing metastasis and those who developed metastases during the follow-up period. Simultaneously, an elevation in these cell counts beyond the established threshold of 218.3 cells per 1 mL of blood in patients prior to any treatment predicted a 12-fold risk of metastases, along with a threefold decrease in distant metastasis-free survival over a 90-month follow-up period. The origin of CD45-EpCAM-CK7/8-CD24+ N-cadherin-CCs remains unclear. In our opinion their existence can be explained by two most probable hypotheses. These cells could exhibit a terminal EMT phenotype, or it might be immature cells originating from the bone marrow. Nonetheless, if this hypothesis holds true, it's worth noting that the mentioned CCs do not align with any of the recognized stages of monocyte or neutrophil maturation, primarily due to the presence of CD45 expression in the myeloid cells. The results suggest the presence in the peripheral blood of patients with metastasis (both during the follow-up period and prior to inclusion in the study) of a cell population with a currently unspecified origin, possibly arising from both myeloid and tumor sources, as confirmed by the presence of aneuploidy.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Antígeno CD24 , Molécula de Adhesión Celular Epitelial , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Molécula de Adhesión Celular Epitelial/metabolismo , Antígeno CD24/metabolismo , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/sangre , Neoplasias de la Mama/mortalidad , Pronóstico , Persona de Mediana Edad , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/metabolismo , Anciano , Adulto , Transición Epitelial-Mesenquimal , Queratina-7/metabolismo , Queratina-8/metabolismo
2.
NPJ Syst Biol Appl ; 9(1): 41, 2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37684264

RESUMEN

Juvenile myelomonocytic leukemia (JMML) is a rare myeloproliferative disease of early childhood that develops due to mutations in the genes of the RAS-signaling pathway. Next-generation high throughput sequencing (NGS) enables identification of various secondary molecular genetic events that can facilitate JMML progression and transformation into secondary acute myeloid leukemia (sAML). The methods of single-cell DNA sequencing (scDNA-seq) enable overcoming limitations of bulk NGS and exploring genetic heterogeneity at the level of individual cells, which can help in a better understanding of the mechanisms leading to JMML progression and provide an opportunity to evaluate the response of leukemia to therapy. In the present work, we applied a two-step droplet microfluidics approach to detect DNA alterations among thousands of single cells and to analyze clonal dynamics in two JMML patients with sAML transformation before and after hematopoietic stem cell transplantation (HSCT). At the time of diagnosis both of our patients harbored only "canonical" mutations in the RAS signaling pathway genes detected by targeted DNA sequencing. Analysis of samples from the time of transformation JMML to sAML revealed additional genetic events that are potential drivers for disease progression in both patients. ScDNA-seq was able to measure of chimerism level and detect a residual tumor clone in the second patient after HSCT (sensitivity of less than 0.1% tumor cells). The data obtained demonstrate the value of scDNA-seq to assess the clonal evolution of JMML to sAML, response to therapy and engraftment monitoring.


Asunto(s)
Leucemia Mielomonocítica Juvenil , Humanos , Preescolar , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/terapia , Evolución Clonal , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación/genética
3.
Clin Exp Metastasis ; 39(4): 505-519, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35347574

RESUMEN

The spread of tumor cells from the primary focus, metastasis, is the main cause of cancer mortality. Therefore, anticancer therapy should be focused on the prevention of metastatic disease. Key targets can be conditions in the primary tumor that are favorable for the appearance of metastatic cells and the first steps of the metastatic cascade. Here, we discuss different approaches for targeting metastasis causes (hypoxia, metabolism changes, and tumor microenvironment) and roots (angiogenesis, epithelial-mesenchymal transition, migration, and invasion). Also, we emphasize the challenges of the existing approaches for metastasis prevention and suggest opportunities to overcome them. In conclusion, we highlight the importance of clinical evaluation of the agents showing antimetastatic effects in vivo, especially in patients with early-stage cancers, the identification of metastatic seeds, and the development of therapeutics for their eradication.


Asunto(s)
Neoplasias , Transición Epitelial-Mesenquimal , Humanos , Metástasis de la Neoplasia , Neoplasias/prevención & control , Neovascularización Patológica , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda