Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Phys Rev Lett ; 117(14): 144801, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27740829

RESUMEN

Few-fs electron bunches from laser wakefield acceleration (LWFA) can efficiently drive plasma wakefields (PWFs), as shown by their propagation through underdense plasma in two experiments. A strong and density-insensitive deceleration of the bunches has been observed in 2 mm of 10^{18} cm^{-3} density plasma with 5.1 GV/m average gradient, which is attributed to a self-driven PWF. This observation implies that the physics of PWFs, usually relying on large-scale rf accelerators as drivers, can be studied by tabletop LWFA electron sources.

2.
Phys Rev Lett ; 114(19): 195003, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26024176

RESUMEN

We present an all-laser-driven, energy-tunable, and quasimonochromatic x-ray source based on Thomson scattering from laser-wakefield-accelerated electrons. One part of the laser beam was used to drive a few-fs bunch of quasimonoenergetic electrons, while the remainder was backscattered off the bunch at weakly relativistic intensity. When the electron energy was tuned from 17-50 MeV, narrow x-ray spectra peaking at 5-42 keV were recorded with high resolution, revealing nonlinear features. We present a large set of measurements showing the stability and practicality of our source.

3.
Phys Rev Lett ; 110(18): 185006, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23683211

RESUMEN

We report the generation of stable and tunable electron bunches with very low absolute energy spread (ΔE ≈ 5 MeV) accelerated in laser wakefields via injection and trapping at a sharp downward density jump produced by a shock front in a supersonic gas flow. The peak of the highly stable and reproducible electron energy spectrum was tuned over more than 1 order of magnitude, containing a charge of 1-100 pC and a charge per energy interval of more than 10 pC/MeV. Laser-plasma electron acceleration with Ti:sapphire lasers using this novel injection mechanism provides high-quality electron bunches tailored for applications.

4.
Sci Rep ; 7: 43548, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28272471

RESUMEN

Proton acceleration from nanometer thin foils with intense laser pulses is investigated experimentally. We analyzed the laser absorptivity by parallel monitoring of laser transmissivity and reflectivity with different laser intensities when moving the targets along the laser axis. A direct correlation between laser absorptivity and maximum proton energy is observed. Experimental results are interpreted in analytical estimation, exhibiting a coexistence of plasma expansion and light-sail form of radiation pressure acceleration (RPA-LS) mechanisms during the entire proton acceleration process based on the measured laser absorptivity and reflectivity.

5.
Nat Commun ; 6: 7568, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-26189811

RESUMEN

X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda