Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Appl Opt ; 60(15): LAC1-LAC3, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34143144

RESUMEN

This Applied Optics feature issue on laser applications to chemical, security, and environmental analysis (LACSEA) highlights papers presented at the LACSEA 2020 Seventeenth Topical Meeting sponsored by The Optical Society (OSA).

2.
Phys Chem Chem Phys ; 22(27): 15734-15742, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32627798

RESUMEN

Ether-functionalized ionic liquids (ILs) have successfully been employed in diverse applications, but their interactions with other solvents are not understood well. In this work, mixtures of 1-methoxyethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EOMIMFSI) and dimethylsulfoxide (DMSO) are studied in terms of their solution structure and hydrogen bonding interactions. The corresponding alkyl-substituted IL 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIMFSI) is analyzed for comparison. A combination of FTIR spectroscopy, excess spectroscopy, and quantum chemical calculations is employed for this purpose. The datasets allow drawing a number of conclusions as follows: (1) the ether group forms intramolecular hydrogen bonds that compete with anions and DMSO; hence, introducing ether groups into the imidazolium-based IL leads to the weakening of hydrogen bonds in the mixtures. (2) With the help of excess spectra and quantum chemical calculations, some complexes such as ion clusters, ion pairs, and individual ions were identified and assigned in the two systems. The solution structures at different concentrations were examined by analyzing the excess spectra of ν(C2-H) and ν(C-D) in the two IL-DMSO-d6 systems. (3) The introduced ether groups result in changes of the main interaction sites, which were found to be concentration-dependent. In the EOMIMFSI-DMSO system, when isolated ions are the main existing form, the C2-Hs are still the main sites interacting with DMSO. However, when ion pairs or larger ion clusters are the main existing species, the C4-Hs are the main sites interacting with DMSO.

3.
Combust Flame ; 215: 389-400, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32903291

RESUMEN

Tin dioxide (SnO2) nanoparticles synthesized via flame spray pyrolysis (FSP) have promising applications for gas sensors. The formation of SnO2 nanoparticles in the gas-phase has been investigated using single droplet combustion and FSP. Precursor solutions of Tin (II) 2-ethylhexanoate dissolved in Xylene with varying Sn concentrations were selected as the precursor-solvent system. The selected precursor-solvent system has its stability and ability to synthesize homogeneous nanoparticles, compared to metal nitrate based precursor solutions. The precursor-solvent system was studied using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and thermogravimetric analysis (TGA). The SnO2 nanoparticles were characterized using X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and transmission electron microscopy (TEM). Droplet surface micro-explosions were observed during the single droplet combustion of the precursor solutions. It is because of the heterogeneous vapor-phase nucleation, which is beneath the liquid droplet surface and caused by precursor thermal decomposition. The results show that the size of nanoparticles obtained both from FSP and single droplet combustion increases with increasing metal-precursor concentration. The TEM images of the particles from such droplet combustion reveal two types of nanoparticles with different sizes and morphologies. The current work provides fundamental understanding of precursor decomposition and particle formation during single droplet combustion, which help in-depth understanding of the flame spray pyrolysis.

4.
Anal Chem ; 91(3): 1764-1767, 2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-30629419

RESUMEN

Spatially compressed dual-wavelength Raman spectroscopy allows recording the full Raman spectrum using a detection system with limited spectral range. The common approach is to record the spectra with the two excitation lasers consecutively and then concatenate the full spectrum. However, with this approach, quantitative analysis for process monitoring is not possible as the investigated object may change between the two acquisitions. In this Note, spectral fusion is proposed as a concept to overcome this problem. The sample is illuminated by the two lasers simultaneously, hence leading to an on-chip fusion of the different parts of the Raman spectrum. It is shown that the resulting data are suitable for quantitative evaluation using univariate and multivariate methods. Dual-wavelength Raman fusion spectroscopy offers new opportunities for building highly compact devices for analytical chemistry.

5.
Chemphyschem ; 20(7): 936-940, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30821876

RESUMEN

Several recent studies of hydroxyl-functionalized ionic liquids (ILs) have shown that cation-cation interactions can be dominating these materials at the molecular level when the anion involved is weakly interacting. The hydrogen bonds between the like ions led to the formation of interesting chain-like, ring-like, or distinct dimeric (i. e. two ion pairs) supermolecular clusters. In the present work, vibrational spectroscopy (ATR-IR and Raman) and density functional theory (DFT) calculations of the hydroxyl-functionalized imidazolium ionic liquid C2 OHmimCl indicate that anion-cation hydrogen bonding interactions are dominating, leading to the formation of distinct dimeric ion pair clusters. In this arrangement, the Cl- anions function as a bridge between the cations by establishing bifurcated hydrogen bonds with the OH group of one cation and the C(2)-H of another cation. Cation-cation interactions, on the other hand, do not play a significant role in the observed clusters.

6.
Analyst ; 144(18): 5368-5372, 2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31414107

RESUMEN

In-line determination of the enantiomeric ratio is still a challenge in process analytical technology (PAT). This study combines enantioselective Raman (esR) spectroscopy with partial least-squares regression (PLSR) to determine the enantiomeric fraction of the chiral molecule (5,6)-diphenyl-morpholin-2-one diluted in dimethyl sulfoxide (DMSO) as a proof-of-concept. Morpholinone derivates are potential candidates for pharmaceutical applications. The PLS weights were carefully analyzed in order to avoid misleading regression results, e.g. caused by sample impurities. A suitable PLSR model was found with two components and it was validated by a leave-one-out cross-validation. The enantiomeric fraction ef(+) could be calculated with deviations from the prepared ef(+) in the range of -0.031 and +0.052 from the esR spectra recorded at a half-wave retarder angle of 30.0°.

7.
Analyst ; 144(6): 2080-2086, 2019 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-30734784

RESUMEN

Enantioselective Raman (esR) spectroscopy is an innovative technique with a high potential for online process monitoring in chiral media, e.g. in the pharmaceutical industry. A prerequisite for an effective application is to combine the experimental approach with suitable concepts for data analysis. In this work, we present a chemometric approach to analyze the esR spectra recorded in an automatized polarization-resolved Raman set-up. It is demonstrated that the proposed method is capable of distinguishing between the enantiomers of the chiral alcohol 4-methylpentan-2-ol in a fully unsupervised fashion. Furthermore, it is shown that the difficulty of facing only small intensity differences between the esR spectra of the enantiomers can be overcome by feeding difference spectra between the pure enantiomers and the racemate into the principal component analysis (PCA) algorithm. The enantiomers are clearly discriminable along the first principal component.

8.
Phys Chem Chem Phys ; 21(37): 20791-20804, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31513201

RESUMEN

Ionic liquids (ILs) and their aqueous solutions are emerging media for solving and manipulating biochemical molecules such as proteins. Unleashing the full potential however requires a detailed mechanistic understanding of how suitable protic and aprotic ILs behave in the presence of water in the first place. The present work aims at making an important step by performing a combined experimental and computational study of two selected ILs and their mixtures with water: the aprotic cholinium propionate ([Chl][Pro]) and the protic N-methyl-2-pyrrolidonium propionate ([NMP][Pro]). IR and Raman spectroscopy reveal stronger ion-solvent interactions in [Chl][Pro]-H2O systems compared to [NMP][Pro]-H2O mixtures. This can be explained by the tightly packed ion-pair associations in [NMP][Pro] comprising the protic -N+-H counterpart, which allows the establishment of highly directional and strong interionic hydrogen bonds. The spectral decomposition of the O-D stretching band into three sub-peaks showed that the protic [NMP][Pro] favors the self-association of water molecules. On the other hand, the predominant fraction of water-anion/cation aggregates exists in aprotic [Chl][Pro]. These hydrated systems can be envisaged using quantum-chemical calculations in the following way: H2O[Chl]+H2O[Pro]-H2O and H2O[NMP]+[Pro]-H2O, which implied preferable solvent-shared ion-pair (SIP) configurations for [Chl][Pro]-H2O systems, whereas the contact ion-pair (CIP) state prevails for the [NMP][Pro]-H2O systems. The latter holds even in the water-rich regime. In future work, these findings will be the basis for an understanding of the underlying principles that govern the interactions of ions with bio-molecules in aqueous solutions.

9.
Phys Chem Chem Phys ; 21(44): 24793-24801, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31687703

RESUMEN

Understanding the chemistry of iron-based metal-organic precursor solutions for spray-flame synthesis is a key step to developing inexpensive and large scale applications for gas-phase synthesized, nano-sized iron oxide particles. Owing to the large variety of available organic solvents and iron compounds, the choice of a suitable precursor-solvent pair is challenging. Systematic investigations of the precursor chemistry of iron-based systems are currently not available. This work aims at filling this gap by providing a detailed spectroscopic analysis of mixtures containing iron(iii) nitrate nonahydrate and alkyl alcohols (C2-4). Moreover, the impact of adding 2-ethylhexanoic acid is explored. The FTIR spectra reveal the formation of carboxylates and allow deriving information about the coordination of the metal-carboxylate complexes. The stability of the precursor solutions is investigated by monitoring precipitation phenomena and turbidity. Furthermore, gas chromatography is employed to provide additional information on oxidation products and esters as well as to aid the interpretation of the FTIR data. It is found that the formation of esters has an enhancing effect on iron sorption and, thus, it promotes precursor stability.

10.
Appl Opt ; 58(14): 3950-3956, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31158215

RESUMEN

Temperature is an important parameter for characterizing chemical, physical, and flow processes occurring in combustion environments. Laser-induced breakdown is a process widely used to determine a material's elemental components and its composition, known as laser-induced breakdown spectroscopy (LIBS). The breakdown event, or more specifically the breakdown threshold, for a low-pressure gas strongly depends on density effects emanating in the likelihood for multiphoton and avalanche ionization. In this work, a comparison of thermometry techniques using laser-induced breakdown is made and an approach to perform simultaneous gas-phase thermometry on a shot-to-shot basis and spectroscopy is demonstrated by monitoring the moment in time the thermal plasma develops along the intensity gradient of a laser pulse. Breakdown thresholds are profiled along the height of a lean methane-air and partially combusting rich propane-air McKenna flame, and correlated to radiation and convection-corrected thermocouple readings.

11.
Appl Opt ; 58(10): LAC1-LAC3, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31045083

RESUMEN

This Applied Optics feature issue on laser applications to chemical, security, and environmental analysis (LACSEA) highlights papers presented at the LACSEA 2018 Sixteenth Topical Meeting sponsored by the Optical Society of America.

12.
Molecules ; 24(18)2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31487942

RESUMEN

Passion fruit oil is a high-value product with applications in the food and cosmetic sectors. It is frequently diluted with sunflower oil. Sunflower oil is also a potential adulterant as its addition does not notably alter the appearance of the passion fruit oil. In this paper, we show that this is also true for the FTIR spectrum. However, the chemometric analysis of the data changes this situation. Principal component analysis (PCA) enables not only the straightforward discrimination of pure passion fruit oil and adulterated samples but also the unambiguous classification of passion fruit oil products from five different manufacturers. Even small amounts-significantly below 1%-of the adulterant can be detected. Furthermore, partial least-squares regression (PLSR) facilitates the quantification of the amount of sunflower oil added to the passion fruit oil. The results demonstrate that the combination of FTIR spectroscopy and chemometric data analysis is a very powerful tool to analyze passion fruit oil.


Asunto(s)
Frutas/química , Passiflora/química , Aceites de Plantas/química , Aceites de Plantas/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Fitoquímicos/química , Análisis de Componente Principal
13.
Chemphyschem ; 19(7): 795-800, 2018 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-29406593

RESUMEN

Vibrational spectra are commonly used to study molecular interactions in solutions. However, the data analysis is often demanding and requires significant experience in order to obtain meaningful results. This study demonstrates that principal component analysis (PCA) can serve as an unsupervised tool for initial screening of non-ideal mixture systems. Taking the aqueous solutions of dimethyl sulfoxide (DMSO) as an example, PCA reveals-easily and fast-the two prominent stoichiometries at 1:2 and 1:1 molar DMSO:water ratio and significantly outperforms elaborate spectral profile analysis or common algorithms as indirect hard modeling (IHM) or multivariate curve resolution (MCR). The corresponding molecular 1:1 and 1:2 clusters are known to be dominating configurations in the solutions.

14.
Chemphyschem ; 19(22): 3061-3068, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30216615

RESUMEN

Interonic interactions determine the macroscopic properties of ionic liquids (ILs). Hence, unravelling the relationships between the microscopic and macroscopic scales is key for rational design. Combining density functional theory (DFT) calculations of isolated ion pairs and vibrational spectroscopy of the condensed phase (fluid or solid) has become a very common approach. In the present work, we make a step towards understanding how the physicochemical effects in small gas phase clusters of a hydroxyl functionalized imidazolium-picrate IL relate with the molecular structure and interactions of the corresponding solid material taking 1-hydroxyethyl-3-methylimidazolium picrate, C2 OHmimPic, as an example. In the isolated ion pair, strong alkyl-OH⋅⋅⋅Pic hydrogen bonding interactions are found rather than the commonly observed hydrogen bonding interactions at the slightly acidic C(2)-H site of the imidazolium ring. However, this part of the cation plays an important role when clusters of ion pairs in the gas phase and inside a crystal lattice are considered. For example, in the dimeric ion-pair cluster, one centre (O*) with two interaction sites (C(2)-H-O* and alkyl OH-Pic) is observed. This configuration is suggested by single crystal X-ray diffraction (XRD), vibrational spectroscopy, and the dispersion-corrected DFT calculations. Hence, the study provides evidence for the appearance of theoretical gas phase clusters in an actual solidified ionic liquid. This ion pair dimer formation may be a general behavior of hydroxyl functionalized imidazolium ILs, but further research is needed to draw a final conclusion. Moreover, the Raman spectra confirm the exclusive gauche conformation of the hyroxyl functionalized alkyl chain.

15.
Analyst ; 143(13): 3040-3048, 2018 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-29878000

RESUMEN

The first experimental application of enantioselective Raman spectroscopy (esR) is demonstrated using the example of the chiral alcohol 2-butanol. Samples of the neat enantiomers and the racemic mixture were analyzed in a self-built Raman set-up. The Raman spectrum allows the discrimination of the chemical species. It is shown that the optical rotation of a Raman peak with a small depolarization ratio can be measured. In addition, without any sample modification, e.g. chiral solvent, the enantiomers are distinguishable at a suitable half-wave retarder angle detecting only the vertically polarized component of the Raman signal.

16.
Anal Chem ; 89(11): 5725-5728, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28485926

RESUMEN

Polarization-resolved Raman spectroscopy provides much more information than its conventional counterpart. However, it usually either requires a complicated setup with two spectrographs and detectors or two measurements must be performed sequentially. This study presents a simple and straightforward approach to recording both polarization components simultaneously with a single spectrograph and detector. The vertically and a horizontally polarized laser beam exiting a Wollaston prism are focused into the sample with a small spatial separation. The scattered light from both beams is imaged onto the slit of an imaging spectrograph as two spatially separated signals, i.e., the polarized and the depolarized Raman signal. Eventually, both spectra are acquired on a single CCD chip simultaneously. Experimental data of ethanol and dimethyl sulfoxide are shown as proof-of-concept. The new method has a number of advantages, for example, laser intensity fluctuations and the polarization dependence of the diffraction grating do not play a role. The proposed approach will be useful for an improved structural analysis and it will be the enabling technology for temporally resolved enantioselective Raman (esR) spectroscopy.

17.
Phys Chem Chem Phys ; 19(21): 13941-13950, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28513676

RESUMEN

The solid to liquid phase transition of n-alkanes with more than ten carbon atoms is an interesting phenomenon relevant to many fields, from cosmetics to automotive. Here we report Raman spectroscopy of tetradecane, pentadecane and hexadecane as a function of temperature. In order to gain information on the structural changes that the hydrocarbons undergo during melting, and to determine the temperature and the speed at which the phase change occurs, their temperature-dependent Raman spectra are acquired. The spectra are analysed not only with respect to frequency shifts, band widths, and intensity ratio of certain bands, but also using a principal component analysis. The spectroscopic data suggest that the solid to liquid phase transition in hexadecane, differently from tetradecane and pentadecane, is almost instantaneous. Tetradecane shows a slightly faster transition than pentadecane. In addition, a rotator phase as an intermediate state between the liquid and crystalline solid phases is identified in pentadecane. Different characteristic features in the solid spectra of the hydrocarbons relate tetradecane and hexadecane to a tryclinic crystalline structure, and pentadecane to an orthorhombic structure.

18.
Phys Chem Chem Phys ; 19(24): 15988-15995, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28594004

RESUMEN

Probing the vibrational dynamics of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (CnmimNTf2) ionic liquids (ILs) using femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) has indicated the ultrafast vibrational energy transfer between counter ions which is governed by interionic interactions and facilitated by hydrogen bonds. In this study, fs-CARS is used to investigate the ultrafast dynamics of the vibrational modes of the CnmimNTf2 ILs with n = 6, 8, 10, and 12 in a spectral region, which involves the imidazolium ring and the alkyl side-chain vibrations. The vibrational Raman modes with wavenumbers around 1418 cm-1 are excited through the CARS process and the ultrafast time evolution of the consequently excited vibrational modes is monitored. The investigation of the life times of the fs-CARS transient signals indicates that the time scale of the dynamics becomes much faster when the alkyl side-chain length of the CnmimNTf2 is longer than n = 8. This observation suggests an increase in the hydrogen bonding interactions due to the nano-structuring of the ionic liquids, which became evident with an increasing length of the alkyl side-chain. This behavior is also found in molecular dynamics simulations. There, an increase of the oxygen density around the C(2)-H moiety of the imidazolium ring, which is the predominant site for hydrogen bond formation, is observed. In other words, the longer the alkyl side-chain, the more reorganization of the ionic liquid into polar and non-polar domains occurs and the higher the probability of finding interionic hydrogen bonds at the C(2)-H position becomes.

19.
Opt Lett ; 41(24): 5684-5687, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27973489

RESUMEN

The determination of the absorption and emission spectra of strongly absorbing molecules is challenging, and the data can be biased by self-absorption of the fluorescence signal. To overcome this problem, a total internal reflection approach is proposed. The strongly absorbing sample is placed in an evanescent field of the radiation of a supercontinuum source. The collimated reflected light encodes the absorption spectrum, and the isotropic fluorescence emission is collected in a direction perpendicular to the surface at the same time. This ensures that the emitted light has a minimum possibility of self-absorption inside the sample.

20.
J Phys Chem A ; 120(31): 6274-86, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27429245

RESUMEN

Quantum chemical theory (DFT and MP2) and vibrational spectroscopy (ATR-IR and Raman) were employed to investigate the electronic structure and molecular interactions in the room-temperature ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. Various possible conformers of a cation-anion pair based on their molecular interactions were simulated in the gas phase. All the different theoretical (MP2, B3LYP, and the dispersion-corrected wB97XD) methods assume the same ion-pair conformation for the lowest energy state. Basis set superimpose error (BSSE) correction was also introduced by using the counterpoise method. Strong C-H···O interactions between the most acidic hydrogen atom of the cation imidazole ring (C2H) and the oxygen atom of the anion were predicted where the anion is located at the top of (C2H). In this case, methyl and alkyl groups also interact with the anion in the form of a C-H···O hydrogen bond. Interestingly, the dispersion-corrected methodology neglects the C4/C5-H···O and C-H···F interaction in the ion-pair calculations. The theoretical results were compared with the experimental observations from Raman scattering and ATR-IR absorption spectroscopy, and the predictions of the molecular interactions in the vibrational spectra were discussed. The wavenumber shifts of the characteristic vibrations relative to the free cation and anion are explained by estimating the geometric parameters as well as the difference in the natural bond orbital (NBO) charge density.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda