Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Angew Chem Int Ed Engl ; 60(21): 11572-11579, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33682318

RESUMEN

Diversity, equality, and inclusion (DEI/EDI) are pressing issues in chemistry and the natural sciences. In this Essay we share how an area-specific approach is "calling in" the community so that it can act to address EDI issues, and support those who are marginalised. Women In Supramolecular Chemistry (WISC) is an international network that aims to support equality, diversity, and inclusion within supramolecular chemistry. WISC has taken a field-specific approach using qualitative research methods with scientists to identify the support that is needed and the problems the supramolecular community needs to address. Herein, we present survey data from the community which highlight the barriers that are faced by those who take career breaks for any reason, a common example is maternity leave, and the importance of mentoring to aid progression post-PhD. In conclusion, we set out an interdisciplinary and creative approach to addressing EDI issues within supramolecular chemistry.

2.
Angew Chem Int Ed Engl ; 59(28): 11369-11373, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32243707

RESUMEN

Two CoII 4 L4 tetrahedral cages prepared from similar building blocks showed contrasting host-guest properties. One cage did not bind guests, whereas the second encapsulated a series of anions, due to electronic and geometric effects. When the building blocks of both cages were present during self-assembly, a library of five CoII LA x LB 4-x cages was formed in a statistical ratio in the absence of guests. Upon incorporation of anions able to interact preferentially with some library members, the products obtained were redistributed in favor of the best anion binders. To quantify the magnitudes of these templation effects, ESI-MS was used to gauge the effect of each template upon library redistribution.

3.
J Am Chem Soc ; 141(29): 11358-11362, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31283214

RESUMEN

A water-soluble self-assembled supramolecular FeII4L4 tetrahedron binds to single stranded DNA, mismatched DNA base pairs, and three-way DNA junctions. Binding of the coordination cage quenches fluorescent labels on the DNA strand, which provides an optical means to detect the interaction and allows the position of the binding site to be gauged with respect to the fluorescent label. Utilizing the quenching and binding properties of the coordination cage, we developed a simple and rapid detection method based on fluorescence quenching to detect unpaired bases in double-stranded DNA.


Asunto(s)
Disparidad de Par Base , ADN de Cadena Simple/metabolismo , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo , ADN/química , ADN/metabolismo , ADN de Cadena Simple/química , Fluorescencia
4.
Angew Chem Int Ed Engl ; 58(24): 7982-7986, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-30921499

RESUMEN

An unreported d,l-tripeptide self-assembled into gels that embedded FeII4 L4 metal-organic cages to form materials that were characterized by TEM, EDX, Raman spectroscopy, rheometry, UV/Vis and NMR spectroscopy, and circular dichroism. The cage type and concentration modulated gel viscoelasticity, and thus the diffusion rate of molecular guests through the nanostructured matrix, as gauged by 19 F and 1 H NMR spectroscopy. When two different cages were added to spatially separated gel layers, the gel-cage composite material enabled the spatial segregation of a mixture of guests that diffused into the gel. Each cage selectively encapsulated its preferred guest during diffusion. We thus present a new strategy for using nested supramolecular interactions to enable the separation of small molecules.

5.
J Am Chem Soc ; 138(21): 6813-21, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27145216

RESUMEN

Meridional (mer) coordination promotes the generation of larger and lower-symmetry prismatic metallosupramolecular structures, in contrast with the facial (fac) coordination common to smaller and higher-symmetry polyhedra. Here, we describe a general route to the selective formation of large metallosupramolecular prisms that contain exclusively mer-coordinated metal vertices. The use of 2-formylpyridine subcomponents that contain perfluorophenylene substituents at their 5-positions resulted in stereoselective formation of the iron(II) complexes from these subcomponents. Only mer vertices were observed, as opposed to the statistical fac/mer mixture otherwise generated. This mer-selective self-assembly could be used to prepare tetragonal (M8L12), pentagonal (M10L15), and hexagonal (M12L18) prisms by taking advantage of the subtle selectivities imposed by the different anilines and counterions employed. The equilibrium between the tetragonal and pentagonal prism followed a linear free-energy relationship, with the ratio between structures correlating with the Hammett σp(+) parameter of the incorporated aniline. The contrasting preferences of the fluorinated and nonfluorinated ligands to generate prisms and tetrahedra, respectively, were quantified energetically, with the destabilization increasing linearly for each "incorrect ligand" incorporated into either structure.

6.
Chem ; 8(2): 299-311, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35128144

RESUMEN

The international Women in Supramolecular Chemistry network believes that taking an area-specific approach effectively supports equality, diversity, and inclusion. Science lacks diversity, and this is intersectional. We share effects of coronavirus disease 2019 (COVID-19) by triangulating findings from an online survey, a collaborative autoethnography, and reflective group research meetings. We show how qualitative research with the community offers insights into challenges and supports individuals, and we demonstrate that research leaders have often taken responsibility for their teams' mental health and well-being at the cost of their own.

7.
Chem Sci ; 12(43): 14564-14569, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34881008

RESUMEN

Since the discovery of the G-quadruplex (G4) structure in telomeres in 1980s, studies have established the role it plays in various biological processes. Here we report binding between DNA G4 and a self-assembled tetrahedral metal-organic cage 1 and consequent formation of aggregates, whereby the cage protects the DNA G4 from cleavage by S1 nuclease. We monitor DNA-cage interaction using fluorescence spectroscopy, firstly by quenching of a fluorescent label appended to the 5' end of G4. Secondly, we detect the decrease in fluorescence of the G4-selective dyes thioflavin-T and Zn-PPIX bound to various DNA G4 sequences following the addition of cage 1. Our results demonstrate that 1 interacts with a wide range of G4s. Moreover, gel electrophoresis, circular dichroism and dynamic light scattering measurements establish the binding of 1 to G4 and indicate the formation of aggregate structures. Finally, we find that DNA G4 contained in an aggregate of cage 1 is protected from cleavage by S1 nuclease.

8.
Chem Sci ; 10(7): 2006-2018, 2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30881630

RESUMEN

Metal-organic containers are readily prepared through self-assembly, but achieving solubility and stability in water remains challenging due to ligand insolubility and the reversible nature of the self-assembly process. Here we have developed conditions for preparing a broad range of architectures that are both soluble and kinetically stable in water through metal(ii)-templated (MII = CoII, NiII, ZnII, CdII) subcomponent self-assembly. Although these structures are composed of hydrophobic and poorly-soluble subcomponents, sulfate counterions render them water-soluble, and they remain intact indefinitely in aqueous solution. Two strategies are presented. Firstly, stability increased with metal-ligand bond strength, maximising when NiII was used as a template. Architectures that disassembled when CoII, ZnII and CdII templates were employed could be directly prepared from NiSO4 in water. Secondly, a higher density of connections between metals and ligands within a structure, considering both ligand topicity and degree of metal chelation, led to increased stability. When tritopic amines were used to build highly chelating ligands around ZnII and CdII templates, cryptate-like water-soluble structures were formed using these labile ions. Our synthetic platform provides a unified understanding of the elements of aqueous stability, allowing predictions of the stability of metal-organic cages that have not yet been prepared.

9.
Chem Sci ; 10(42): 9663-9672, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-32055336

RESUMEN

Defective anion transport is a hallmark of the genetic disease cystic fibrosis (CF). One approach to restore anion transport to CF cells utilises alternative pathways for transmembrane anion transport, including artificial anion carriers (anionophores). Here, we screened 22 anionophores for biological activity using fluorescence emission from the halide-sensitive yellow fluorescent protein. Three compounds possessed anion transport activity similar to or greater than that of a bis-(p-nitrophenyl)ureidodecalin previously shown to have promising biological activity. Anion transport by these anionophores was concentration-dependent and persistent. All four anionophores mediated anion transport in CF cells, and their activity was additive to rescue of the predominant disease-causing variant F508del-CFTR using the clinically-licensed drugs lumacaftor and ivacaftor. Toxicity was variable but minimal at the lower end. The results provide further evidence that anionophores, by themselves or together with other treatments that restore anion transport, offer a potential therapeutic strategy for CF.

10.
Chem Sci ; 9(7): 1925-1930, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29719682

RESUMEN

The molecular components of biological systems self-sort in different ways to function cooperatively and to avoid interfering with each other. Understanding the driving forces behind these different sorting modes enables progressively more complex self-assembling synthetic systems to be designed. Here we show that subtle ligand differences engender distinct M6L4 cage geometries - an S4-symmetric scalenohedron, or pseudo-octahedra having T point symmetry. When two different ligands were simultaneously employed during self-assembly, a mixture of homo- and heteroleptic cages was generated. Each set of product structures represents a unique sorting regime: biases toward specific geometries, preferential incorporation of one ligand over another, and the amplification of homoleptic products were all observed. The ligands' geometries, electronic properties, and flexibility were found to influence the sorting regime adopted, together with templation effects. A new method of using mass spectrometry to quantitatively analyse mixtures of self-sorted assemblies was developed to assess individual outcomes. Product distributions in complex, dynamic mixtures were thus quantified by non-chromatographic methods.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda