Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Polymers (Basel) ; 15(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36904415

RESUMEN

The development of electrospun nanofibers based on cellulose and its derivatives is an inalienable task of modern materials science branches related to biomedical engineering. The considerable compatibility with multiple cell lines and capability to form unaligned nanofibrous frameworks help reproduce the properties of natural extracellular matrix and ensure scaffold applications as cell carriers promoting substantial cell adhesion, growth, and proliferation. In this paper, we are focusing on the structural features of cellulose itself and electrospun cellulosic fibers, including fiber diameter, spacing, and alignment responsible for facilitated cell capture. The study emphasizes the role of the most frequently discussed cellulose derivatives (cellulose acetate, carboxymethylcellulose, hydroxypropyl cellulose, etc.) and composites in scaffolding and cell culturing. The key issues of the electrospinning technique in scaffold design and insufficient micromechanics assessment are discussed. Based on recent studies aiming at the fabrication of artificial 2D and 3D nanofiber matrices, the current research provides the applicability assessment of the scaffolds toward osteoblasts (hFOB line), fibroblastic (NIH/3T3, HDF, HFF-1, L929 lines), endothelial (HUVEC line), and several other cell types. Furthermore, a critical aspect of cell adhesion through the adsorption of proteins on the surfaces is touched upon.

2.
Polymers (Basel) ; 15(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37242945

RESUMEN

The objectives of the study were as follows: (1) to develop two methods for the preparation of macroporous composite chitosan/hyaluronic acid (Ch/HA) hydrogels based on covalently cross-linked Ch and low molecular weight (Mw) HA (5 and 30 kDa); (2) to investigate some properties (swelling and in vitro degradation) and structures of the hydrogels; (3) to evaluate the hydrogels in vitro as potential biodegradable matrices for tissue engineering. Chitosan was cross-linked with either genipin (Gen) or glutaraldehyde (GA). Method 1 allowed the distribution of HA macromolecules within the hydrogel (bulk modification). In Method 2, hyaluronic acid formed a polyelectrolyte complex with Ch over the hydrogel surface (surface modification). By varying compositions of the Ch/HA hydrogels, highly porous interconnected structures (with mean pore sizes of 50-450 µm) were fabricated and studied using confocal laser scanning microscopy (CLSM). Mouse fibroblasts (L929) were cultured in the hydrogels for 7 days. Cell growth and proliferation within the hydrogel samples were studied via MTT-assay. The entrapment of low molecular weight HA was found to result in an enhancement of cell growth in the Ch/HA hydrogels compared to that in the Ch matrices. The Ch/HA hydrogels after bulk modification promoted better cell adhesion, growth and proliferation than the samples prepared by using Method 2 (surface modification).

3.
Polymers (Basel) ; 14(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35012119

RESUMEN

Currently, the significantly developing fields of tissue engineering related to the fabrication of polymer-based materials that possess microenvironments suitable to provide cell attachment and promote cell differentiation and proliferation involve various materials and approaches. Biomimicking approach in tissue engineering is aimed at the development of a highly biocompatible and bioactive material that would most accurately imitate the structural features of the native extracellular matrix consisting of specially arranged fibrous constructions. For this reason, the present research is devoted to the discussion of promising fibrous materials for bone tissue regeneration obtained by electrospinning techniques. In this brief review, we focus on the recently presented natural and synthetic polymers, as well as their combinations with each other and with bioactive inorganic incorporations in order to form composite electrospun scaffolds. The application of several electrospinning techniques in relation to a number of polymers is touched upon. Additionally, the efficiency of nanofibrous composite materials intended for use in bone tissue engineering is discussed based on biological activity and physiochemical characteristics.

4.
Polymers (Basel) ; 12(5)2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32397589

RESUMEN

Chitosan is a promising environment friendly active polymer packaging material due to its biodegradability, exceptional film forming capacity, great mechanical strength, appropriate barrier property along with intrinsic antioxidant and antimicrobial features. Bifunctional reagent was used for producing water insoluble chitosan films. Biopolymeric films crosslinked by Genipin (Gp), which is a reagent of natural origin, should have high potential in food packaging. The influence of the ratio of functional groups in the chitosan-Gp system on film absorption in the visible and ultraviolet regions of the spectrum, sorption, physical, and mechanical properties of the films has been studied. The degree of chitosan crosslinking in the films obtained from solutions containing Gp was estimated using the experimental data on film swelling and water vapor sorption isotherms. It is demonstrated that crosslinking with genipin improves swelling, water resistance, and mechanical properties of the films.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda