Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nature ; 602(7897): 481-486, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34942632

RESUMEN

Humans have infected a wide range of animals with SARS-CoV-21-5, but the establishment of a new natural animal reservoir has not been observed. Here we document that free-ranging white-tailed deer (Odocoileus virginianus) are highly susceptible to infection with SARS-CoV-2, are exposed to multiple SARS-CoV-2 variants from humans and are capable of sustaining transmission in nature. Using real-time PCR with reverse transcription, we detected SARS-CoV-2 in more than one-third (129 out of 360, 35.8%) of nasal swabs obtained from O. virginianus in northeast Ohio in the USA during January to March 2021. Deer in six locations were infected with three SARS-CoV-2 lineages (B.1.2, B.1.582 and B.1.596). The B.1.2 viruses, dominant in humans in Ohio at the time, infected deer in four locations. We detected probable deer-to-deer transmission of B.1.2, B.1.582 and B.1.596 viruses, enabling the virus to acquire amino acid substitutions in the spike protein (including the receptor-binding domain) and ORF1 that are observed infrequently in humans. No spillback to humans was observed, but these findings demonstrate that SARS-CoV-2 viruses have been transmitted in wildlife in the USA, potentially opening new pathways for evolution. There is an urgent need to establish comprehensive 'One Health' programmes to monitor the environment, deer and other wildlife hosts globally.


Asunto(s)
Animales Salvajes/virología , COVID-19/veterinaria , Ciervos/virología , Filogenia , SARS-CoV-2/aislamiento & purificación , Zoonosis Virales/transmisión , Zoonosis Virales/virología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , COVID-19/epidemiología , COVID-19/transmisión , Evolución Molecular , Humanos , Masculino , Ohio/epidemiología , Salud Única/tendencias , SARS-CoV-2/química , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Zoonosis Virales/epidemiología
2.
Emerg Infect Dis ; 29(12): 2451-2460, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37987580

RESUMEN

We describe the pathology of natural infection with highly pathogenic avian influenza A(H5N1) virus of Eurasian lineage Goose/Guangdong clade 2.3.4.4b in 67 wild terrestrial mammals throughout the United States during April 1‒July 21, 2022. Affected mammals include 50 red foxes (Vulpes vulpes), 6 striped skunks (Mephitis mephitis), 4 raccoons (Procyon lotor), 2 bobcats (Lynx rufus), 2 Virginia opossums (Didelphis virginiana), 1 coyote (Canis latrans), 1 fisher (Pekania pennanti), and 1 gray fox (Urocyon cinereoargenteus). Infected mammals showed primarily neurologic signs. Necrotizing meningoencephalitis, interstitial pneumonia, and myocardial necrosis were the most common lesions; however, species variations in lesion distribution were observed. Genotype analysis of sequences from 48 animals indicates that these cases represent spillover infections from wild birds.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Animales , Estados Unidos/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Mephitidae , Gripe Aviar/epidemiología , Mamíferos , Animales Salvajes , Zorros
3.
Emerg Infect Dis ; 28(2): 373-381, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35075996

RESUMEN

Infectious hypodermal and hematopoietic necrosis virus (IHHNV) is a nonenveloped, linear, single-stranded DNA virus belonging to the family Parvoviridae and is a World Organisation for Animal Health (OIE)-notifiable crustacean pathogen. During screening of Penaeus vannamei shrimp from 3 commercial shrimp facilities in the United States for a panel of OIE-listed (n = 7) and nonlisted (n = 2) crustacean diseases, shrimp from these facilities tested positive for IHHNV. Nucleotide sequences of PCR amplicons showed 99%-100% similarity to IHHNV isolates from Latin America and Asia. The whole genome of the isolates also showed high similarity to type 2 infectious forms of IHHNV. Phylogenetic analysis using capsid gene and whole-genome sequences demonstrated that the isolates clustered with an IHHNV isolate from Ecuador. The detection of an OIE-listed crustacean pathogen in the United States highlights the need for biosecurity protocols in hatcheries and grow-out ponds to mitigate losses.


Asunto(s)
Densovirinae , Penaeidae , Animales , Densovirinae/genética , Genoma , Penaeidae/genética , Filogenia , Reacción en Cadena de la Polimerasa , Estados Unidos/epidemiología
4.
Emerg Infect Dis ; 26(12): 2966-2969, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33030423

RESUMEN

An outbreak of low-pathogenicity avian influenza A(H7N3) virus of North American wild bird lineage occurred on commercial turkey farms in North Carolina and South Carolina, USA, during March-April 2020. The virus mutated to the highly pathogenic form in 1 house on 1 farm via recombination with host 28S rRNA.


Asunto(s)
Gripe Aviar , Enfermedades de las Aves de Corral , Aves de Corral , Animales , Aves , Brotes de Enfermedades , Subtipo H7N3 del Virus de la Influenza A , Gripe Aviar/epidemiología , North Carolina , Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , Estados Unidos/epidemiología
5.
Emerg Infect Dis ; 26(12): 3094-3096, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33219794

RESUMEN

Low pathogenicity avian influenza (H5N2) virus was detected in poultry in the Dominican Republic in 2007 and re-emerged in 2017. Whole-genome sequencing and phylogenetic analysis show introduction of an H5N2 virus lineage from Mexico into poultry in the Dominican Republic, then divergence into 3 distinct genetic subgroups during 2007-2019.


Asunto(s)
Subtipo H5N2 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , República Dominicana/epidemiología , Gripe Aviar/epidemiología , México , Filogenia , Aves de Corral , Virulencia
6.
J Virol ; 92(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30045988

RESUMEN

Wild-bird origin influenza A viruses (IAVs or avian influenza) have led to sporadic outbreaks among domestic poultry in the United States and Canada, resulting in economic losses through the implementation of costly containment practices and destruction of birds. We used evolutionary analyses of virus sequence data to determine that 78 H5 low-pathogenic avian influenza viruses (LPAIVs) isolated from domestic poultry in the United States and Canada during 2001 to 2017 resulted from 18 independent virus introductions from wild birds. Within the wild-bird reservoir, the hemagglutinin gene segments of H5 LPAIVs exist primarily as two cocirculating genetic sublineages, and our findings suggest that the H5 gene segments flow within each migratory bird flyway and among adjacent flyways, with limited exchange between the nonadjacent Atlantic and Pacific Flyways. Phylogeographic analyses provided evidence that IAVs from dabbling ducks and swans/geese contributed to the emergence of viruses among domestic poultry. H5 LPAIVs isolated from commercial farm poultry (i.e., turkey) that were descended from a single introduction typically remained a single genotype, whereas those from live-bird markets sometimes led to multiple genotypes, reflecting the potential for reassortment with other IAVs circulating within live-bird markets. H5 LPAIVs introduced from wild birds to domestic poultry represent economic threats to the U.S. poultry industry, and our data suggest that such introductions have been sporadic, controlled effectively through production monitoring and a stamping-out policy, and are, therefore, unlikely to result in sustained detections in commercial poultry operations.IMPORTANCE Integration of viral genome sequencing into influenza surveillance for wild birds and domestic poultry can elucidate evolutionary pathways of economically costly poultry pathogens. Evolutionary analyses of H5 LPAIVs detected in domestic poultry in the United States and Canada during 2001 to 2017 suggest that these viruses originated from repeated introductions of IAVs from wild birds, followed by various degrees of reassortment. Reassortment was observed where biosecurity was low and where opportunities for more than one virus to circulate existed (e.g., congregations of birds from different premises, such as live-bird markets). None of the H5 lineages identified were maintained for the long term in domestic poultry, suggesting that management strategies have been effective in minimizing the impacts of virus introductions on U.S. poultry production.


Asunto(s)
Genotipo , Subtipo H5N2 del Virus de la Influenza A/genética , Gripe Aviar , Enfermedades de las Aves de Corral , Aves de Corral/virología , Animales , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/epidemiología , Gripe Aviar/genética , América del Norte/epidemiología , Filogeografía , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/genética
7.
J Virol ; 91(9)2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28202755

RESUMEN

Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses' origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus's origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing >99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; >98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir.IMPORTANCE In January 2016, a novel H7N8 HPAI virus caused a disease outbreak in turkeys in Indiana, USA. To determine the origin of this virus, we sequenced and analyzed 441 wild-bird origin influenza virus strains isolated from wild birds inhabiting North America. We found that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Our results suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may play an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir. Our study also highlights the importance of a coordinated, systematic, and collaborative surveillance for IAVs in both poultry and wild-bird populations.


Asunto(s)
Brotes de Enfermedades/veterinaria , Patos/virología , Genoma Viral/genética , Gripe Aviar/transmisión , Pavos/virología , Animales , Animales Salvajes/virología , Secuencia de Bases , Evolución Molecular , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Filogenia , Enfermedades de las Aves de Corral/virología , Recombinación Genética/genética , Análisis de Secuencia de ARN
8.
J Virol ; 90(23): 10963-10971, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27681134

RESUMEN

The swine-human interface created at agricultural fairs, along with the generation of and maintenance of influenza A virus diversity in exhibition swine, presents an ongoing threat to public health. Nucleotide sequences of influenza A virus isolates collected from exhibition swine in Ohio (n = 262) and Indiana (n = 103) during 2009 to 2013 were used to investigate viral evolution and movement within this niche sector of the swine industry. Phylogenetic and Bayesian analyses were employed to identify introductions of influenza A virus to exhibition swine and study viral population dynamics. In 2013 alone, we identified 10 independent introductions of influenza A virus into Ohio and/or Indiana exhibition swine. Frequently, viruses from the same introduction were identified at multiple fairs within the region, providing evidence of rapid and widespread viral movement within the exhibition swine populations of the two states. While pigs moving from fair to fair to fair is possible in some locations, the concurrent detection of nearly identical strains at several fairs indicates that a common viral source was more likely. Importantly, we detected an association between the high number of human variant H3N2 (H3N2v) virus infections in 2012 and the widespread circulation of influenza A viruses of the same genotype in exhibition swine in Ohio fairs sampled that year. The extent of viral diversity observed in exhibition swine and the rapidity with which it disseminated across long distances indicate that novel strains of influenza A virus will continue to emerge and spread within exhibition swine populations, presenting an ongoing threat to humans. IMPORTANCE: Understanding the underlying population dynamics of influenza A viruses in commercial and exhibition swine is central to assessing the risk for human infections with variant viruses, including H3N2v. We used viral genomic sequences from isolates collected from exhibition swine during 2009 to 2013 to understand how the peak of H3N2v cases in 2012 relates to long-term trends in the population dynamics of pandemic viruses recently introduced into commercial and exhibition swine in the United States. The results of our spatial analysis underscore the key role of rapid viral dispersal in spreading multiple genetic lineages throughout a multistate network of agricultural fairs, providing opportunities for divergent lineages to coinfect, reassort, and generate new viral genotypes. The higher genetic diversity of genotypes cocirculating in exhibition swine since 2013 could facilitate the evolution of new reassortants, potentially with even greater ability to cause severe infections in humans or cause human-to-human transmission, highlighting the need for continued vigilance.


Asunto(s)
Virus de la Influenza A , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Animales , Teorema de Bayes , Evolución Molecular , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Filogenia , Virus Reordenados/genética , Virus Reordenados/patogenicidad , Sus scrofa , Porcinos , Enfermedades de los Porcinos/epidemiología , Estados Unidos/epidemiología
9.
J Infect Dis ; 213(2): 173-82, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26243317

RESUMEN

The role of exhibition swine in influenza A virus transmission was recently demonstrated by >300 infections with influenza A(H3N2) variant viruses among individuals who attended agricultural fairs. Through active influenza A virus surveillance in US exhibition swine and whole-genome sequencing of 380 isolates, we demonstrate that exhibition swine are actively involved in the evolution of influenza A viruses, including zoonotic strains. First, frequent introduction of influenza A viruses from commercial swine populations provides new genetic diversity in exhibition pigs each year locally. Second, genomic reassortment between viruses cocirculating in exhibition swine increases viral diversity. Third, viral migration between exhibition swine in neighboring states demonstrates that movements of exhibition pigs contributes to the spread of genetic diversity. The unexpected frequency of viral exchange between commercial and exhibition swine raises questions about the understudied interface between these populations. Overall, the complexity of viral evolution in exhibition swine indicates that novel viruses are likely to continually reemerge, presenting threats to humans.


Asunto(s)
Evolución Biológica , Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Animales , Variación Genética , Genoma Viral , Genotipo , Humanos , Gripe Humana/epidemiología , Gripe Humana/transmisión , Gripe Humana/virología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Filogenia , Virus Reordenados , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/genética , Factores de Tiempo , Estados Unidos/epidemiología , Zoonosis
10.
Emerg Infect Dis ; 20(9): 1472-80, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25148572

RESUMEN

Agricultural fairs provide an opportunity for bidirectional transmission of influenza A viruses. We sought to determine influenza A virus activity among swine at fairs in the United States. As part of an ongoing active influenza A virus surveillance project, nasal swab samples were collected from exhibition swine at 40 selected Ohio agricultural fairs during 2012. Influenza A(H3N2) virus was isolated from swine at 10 of the fairs. According to a concurrent public health investigation, 7 of the 10 fairs were epidemiologically linked to confirmed human infections with influenza A(H3N2) variant virus. Comparison of genome sequences of the subtype H3N2 isolates recovered from humans and swine from each fair revealed nucleotide identities of >99.7%, confirming zoonotic transmission between swine and humans. All influenza A(H3N2) viruses isolated in this study, regardless of host species or fair, were >99.5% identical, indicating that 1 virus strain was widely circulating among exhibition swine in Ohio during 2012.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/epidemiología , Gripe Humana/transmisión , Animales , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H3N2 del Virus de la Influenza A/clasificación , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Datos de Secuencia Molecular , Neuraminidasa/genética , Ohio/epidemiología , Infecciones por Orthomyxoviridae/epidemiología , Filogenia , Vigilancia en Salud Pública , Factores de Riesgo , Análisis de Secuencia de ADN , Porcinos , Enfermedades de los Porcinos/epidemiología , Proteínas Virales/genética
11.
Environ Sci Technol Lett ; 10(12): 1181-1187, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38106530

RESUMEN

Avian influenza viruses (AIVs) infect both wild birds and domestic poultry, resulting in economically costly outbreaks that have the potential to impact public health. Currently, a knowledge gap exists regarding the detection of infectious AIVs in the aquatic environment. In response to the 2021-2022 Eurasian strain highly pathogenic avian influenza (HPAI) A/goose/Guangdong/1/1996 clade 2.3.4.4 lineage H5 outbreak, an AIV environmental outbreak response study was conducted using a One Health approach. An optimized method was used to temporally sample (April and May 2022) and analyze (culture and molecular methods) surface water from five water bodies (four wetlands and one lake used as a comparison location) in areas near confirmed HPAI detections in wild bird or poultry operations. Avian influenza viruses were isolated from water samples collected in April from all four wetlands (not from the comparison lake sample); HPAI H5N1 was isolated from one wetland. No virus was isolated from the May samples. Several factors, including increased water temperatures, precipitation, biotic and abiotic factors, and absence of AIV-contaminated fecal material due to fewer waterfowl present, may have contributed to the lack of virus isolation from May samples. Results demonstrate surface water as a plausible medium for transmission of AIVs, including the HPAI virus.

12.
Viruses ; 15(11)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38005949

RESUMEN

Highly pathogenic avian influenza viruses (HPAIVs) of subtype H5 of the Gs/GD/96 lineage remain a major threat to poultry due to endemicity in wild birds. H5N1 HPAIVs from this lineage were detected in 2021 in the United States (U.S.) and since then have infected many wild and domestic birds. We evaluated the pathobiology of an early U.S. H5N1 HPAIV (clade 2.3.4.4b, 2021) and two H5N8 HPAIVs from previous outbreaks in the U.S. (clade 2.3.4.4c, 2014) and Europe (clade 2.3.4.4b, 2016) in chickens and turkeys. Differences in clinical signs, mean death times (MDTs), and virus transmissibility were found between chickens and turkeys. The mean bird infective dose (BID50) of the 2021 H5N1 virus was approximately 2.6 log10 50% embryo infective dose (EID50) in chickens and 2.2 log10 EID50 in turkeys, and the virus transmitted to contact-exposed turkeys but not chickens. The BID50 for the 2016 H5N8 virus was also slightly different in chickens and turkeys (4.2 and 4.7 log10 EID50, respectively); however, the BID50 for the 2014 H5N8 virus was higher for chickens than turkeys (3.9 and ~0.9 log10 EID50, respectively). With all viruses, turkeys took longer to die (MDTs of 2.6-8.2 days for turkeys and 1-4 days for chickens), which increased the virus shedding period and facilitated transmission to contacts.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N8 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Estados Unidos/epidemiología , Subtipo H5N8 del Virus de la Influenza A/genética , Pollos , Subtipo H5N1 del Virus de la Influenza A/genética , Pavos , Virulencia , Virus de la Influenza A/genética , Animales Salvajes
13.
J Clin Microbiol ; 50(2): 378-87, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22135263

RESUMEN

Newcastle disease (ND) is one of the most important diseases of poultry, negatively affecting poultry production worldwide. The disease is caused by Newcastle disease virus (NDV) or avian paramyxovirus type 1 (APMV-1), a negative-sense single-stranded RNA virus of the genus Avulavirus, family Paramyxoviridae. Although all NDV isolates characterized to date belong to a single serotype of APMV-1, significant genetic diversity has been described between different NDV isolates. Here we present the complete genome sequence and the clinicopathological characterization of a virulent Newcastle disease virus isolate (NDV-Peru/08) obtained from poultry during an outbreak of ND in Peru in 2008. Phylogenetic reconstruction and analysis of the evolutionary distances between NDV-Peru/08 and other isolates representing established NDV genotypes revealed the existence of large genomic and amino differences that clearly distinguish this isolate from viruses of typical NDV genotypes. Although NDV-Peru/08 is a genetically distinct virus, pathogenesis studies conducted with chickens revealed that NDV-Peru/08 infection results in clinical signs characteristic of velogenic viscerotropic NDV strains. Additionally, vaccination studies have shown that an inactivated NDV-LaSota/46 vaccine conferred full protection from NDV-Peru/08-induced clinical disease and mortality. This represents the first complete characterization of a virulent NDV isolate from South America.


Asunto(s)
Genoma Viral , Enfermedad de Newcastle/epidemiología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/genética , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/virología , ARN Viral/genética , Animales , Pollos , Análisis por Conglomerados , Brotes de Enfermedades , Datos de Secuencia Molecular , Enfermedad de Newcastle/patología , Enfermedad de Newcastle/prevención & control , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Virus de la Enfermedad de Newcastle/patogenicidad , Perú/epidemiología , Filogenia , Enfermedades de las Aves de Corral/patología , Enfermedades de las Aves de Corral/prevención & control , Análisis de Secuencia de ADN , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Virulencia
14.
Virus Evol ; 8(1): veac009, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35494174

RESUMEN

Live bird market (LBM) surveillance was conducted in the Northeast United States (US) to monitor for the presence of avian influenza viruses (AIV) in domestic poultry and market environments. A total of 384 H2N2 low pathogenicity AIV (LPAIV) isolated from active surveillance efforts in the LBM system of New York, Connecticut, Rhode Island, New Jersey, Pennsylvania, and Maryland during 2013-2019 were included in this analysis. Comparative phylogenetic analysis showed that a wild-bird-origin H2N2 virus may have been introduced into the LBMs in Pennsylvania and independently evolved since March 2012 followed by spread to LBMs in New York City during late 2012-early 2013. LBMs in New York state played a key role in the maintenance and dissemination of the virus to LBMs in the Northeast US including reverse spread to Pennsylvania LBMs. The frequent detections in the domestic ducks and market environment with viral transmissions between birds and environment possibly led to viral adaptation and circulation in domestic gallinaceous poultry in LBMs, suggesting significant roles of domestic ducks and contaminated LBM environment as reservoirs in maintenance and dissemination of H2N2 LPAIV.

15.
J Virol Methods ; 308: 114594, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35931229

RESUMEN

The surveillance of migratory wild birds (MWBs) for avian influenza virus (AIV) allows detecting the emergence of highly pathogenic AIV that can infect domestic poultry and mammals, new subtypes, and antigenic/genetic variants. The current AIV surveillance system for MWBs in the United States is based on virus isolation (VI) followed by sequencing isolates. This system primarily focuses on the early detection of H5 and H7 AIVs. However, it is suboptimal in assessing diverse AIV subtypes at any given time because of the low VI success rate. To improve such a shortfall, a SYBR® Green-based real-time reverse transcription-polymerase chain reaction (rtRT-PCR) panel was developed for direct HA subtyping of AIVs in oropharyngeal-cloacal (OPC) swabs from MWBs. Under optimal conditions, the PCR panel detected AIVs of all 16 different HA subtypes with an average limit of detection of 102.6 copies/reaction (2 µl of extract). In testing 90 OPC swabs from 13 MWB species, the PCR provided a significantly faster turnaround of results and demonstrated the presence of more subtypes and concurrent infection among MWBs compared to what the current surveillance testing algorithm showed. In conclusion, newly developed SYBR® Green rtRT-PCR panel can be a useful tool for monitoring MWBs for AIVs.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Animales Salvajes , Hemaglutininas , Mamíferos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
16.
Transbound Emerg Dis ; 69(5): e3060-e3075, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35839756

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a worldwide distribution in humans and many other mammalian species. In late September 2021, 12 animals maintained by the Chicago Zoological Society's Brookfield Zoo were observed with variable clinical signs. The Delta variant of SARS-CoV-2 was detected in faeces and nasal swabs by qRT-PCR, including the first detection in animals from the families Procyonidae and Viverridae. Test positivity rate was 12.5% for 35 animals tested. All animals had been vaccinated with at least one dose of a recombinant vaccine designed for animals and all recovered with variable supportive treatment. Sequence analysis showed that six zoo animal strains were closely correlated with 18 human SARS-CoV-2 strains, suggestive of potential human-to-animal transmission events. This report documents the expanding host range of COVID-19 during the ongoing pandemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , COVID-19/epidemiología , COVID-19/veterinaria , Brotes de Enfermedades , Humanos , Pandemias/prevención & control , SARS-CoV-2/genética , Viverridae
17.
Infect Genet Evol ; 91: 104809, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33727141

RESUMEN

Eurasian collared doves (Streptopelia decaocto) were introduced into Florida in the 1980s and have since established populations throughout the continental United States. Pigeon paramyxovirus-1 (PPMV-1), a species-adapted genotype VI Avian orthoavulavirus 1, has caused periodic outbreaks among collared doves in the U.S. since 2001 with outbreaks occasionally involving native doves. In California, PPMV-1 mortality events were first documented in Riverside County in 2014 with subsequent outbreaks in 23 additional counties from southern to northern California between 2015 and 2019. Affected collared doves exhibited torticollis and partial paralysis. Pale kidneys were frequently visible on gross necropsy (65.4%; 51/78) while lymphoplasmacytic interstitial nephritis often with acute tubular necrosis (96.0%; 24/25) and pancreatic necrosis (80.0%; 20/25) were common findings on histopathology. In total, PPMV-1 was confirmed by rRT-PCR and sequence analysis from oropharyngeal and/or cloacal swabs in 93.0% (40/43) of the collared doves tested from 16 California counties. In 2017, Avian orthoavulavirus 1 was confirmed in a native mourning dove (Zenaida macroura) found dead during a PPMV-1 outbreak in collared doves by rRT-PCR from formalin-fixed paraffin-embedded (FFPE) tissues, after the initial rRT-PCR from swabs failed to detect the virus. Molecular sequencing of the fusion protein of isolates collected from collared doves during outbreaks in 2014, 2016, and 2017 identified two distinct subgenotypes, VIa and VIn. Subgenotype VIn has been primarily isolated from collared doves in the southern U.S., while VIa has been isolated from mixed avian species in the northeastern U.S., indicating two independent introductions into California. While populations of collared doves are not expected to be substantially impacted by this disease, PPMV-1 may pose a threat to already declining populations of native columbids. This threat could be assessed by monitoring native and non-native columbids for PPMV-1. Based on our study, swab samples may not be sufficient to detect infection in native columbids and may require the use of non-traditional diagnostic approaches, such as FFPE tissues, to ensure virus detection.


Asunto(s)
Enfermedades de las Aves/epidemiología , Columbidae , Infecciones por Paramyxoviridae/veterinaria , Paramyxovirinae/aislamiento & purificación , Factores de Edad , Animales , Enfermedades de las Aves/mortalidad , Enfermedades de las Aves/virología , California/epidemiología , Femenino , Especies Introducidas , Masculino , Infecciones por Paramyxoviridae/epidemiología , Infecciones por Paramyxoviridae/mortalidad , Infecciones por Paramyxoviridae/virología , Paramyxovirinae/genética , Prevalencia , Estaciones del Año , Factores Sexuales
18.
bioRxiv ; 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34790982

RESUMEN

Human-to-animal spillover of SARS-CoV-2 virus has occurred in a wide range of animals, but thus far, the establishment of a new natural animal reservoir has not been detected. Here, we detected SARS-CoV-2 virus using rRT-PCR in 129 out of 360 (35.8%) free-ranging white-tailed deer ( Odocoileus virginianus ) from northeast Ohio (USA) sampled between January-March 2021. Deer in 6 locations were infected with at least 3 lineages of SARS-CoV-2 (B.1.2, B.1.596, B.1.582). The B.1.2 viruses, dominant in Ohio at the time, spilled over multiple times into deer populations in different locations. Deer-to-deer transmission may have occurred in three locations. The establishment of a natural reservoir of SARS-CoV-2 in white-tailed deer could facilitate divergent evolutionary trajectories and future spillback to humans, further complicating long-term COVID-19 control strategies. ONE-SENTENCE SUMMARY: A significant proportion of SARS-CoV-2 infection in free-ranging US white-tailed deer reveals a potential new reservoir.

19.
Viruses ; 13(9)2021 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-34578394

RESUMEN

Approximately 67% of U.S. households have pets. Limited data are available on SARS-CoV-2 in pets. We assessed SARS-CoV-2 infection in pets during a COVID-19 household transmission investigation. Pets from households with ≥1 person with laboratory-confirmed COVID-19 were eligible for inclusion from April-May 2020. We enrolled 37 dogs and 19 cats from 34 households. All oropharyngeal, nasal, and rectal swabs tested negative by rRT-PCR; one dog's fur swabs (2%) tested positive by rRT-PCR at the first sampling. Among 47 pets with serological results, eight (17%) pets (four dogs, four cats) from 6/30 (20%) households had detectable SARS-CoV-2 neutralizing antibodies. In households with a seropositive pet, the proportion of people with laboratory-confirmed COVID-19 was greater (median 79%; range: 40-100%) compared to households with no seropositive pet (median 37%; range: 13-100%) (p = 0.01). Thirty-three pets with serologic results had frequent daily contact (≥1 h) with the index patient before the person's COVID-19 diagnosis. Of these 33 pets, 14 (42%) had decreased contact with the index patient after diagnosis and none were seropositive; of the 19 (58%) pets with continued contact, four (21%) were seropositive. Seropositive pets likely acquired infection after contact with people with COVID-19. People with COVID-19 should restrict contact with pets and other animals.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Mascotas/virología , SARS-CoV-2 , Animales , COVID-19/historia , COVID-19/transmisión , Gatos , Perros , Composición Familiar , Historia del Siglo XXI , Humanos , Mascotas/historia , Filogenia , Vigilancia de la Población , ARN Viral , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Estudios Seroepidemiológicos , Utah/epidemiología , Zoonosis Virales/epidemiología , Wisconsin/epidemiología
20.
J Vet Diagn Invest ; 22(5): 784-8, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20807944

RESUMEN

Respiratory swab samples were collected from 5 pet ferrets (Mustela putorius furo) exhibiting influenza-like illness. The ferrets represented 3 households in 2 states. In each case, the owners reported influenza-like illness in themselves or family members prior to the onset of a similar illness in the ferrets. Real-time reverse transcription polymerase chain reaction assays designed for the detection of the 2009 H1N1 Influenza A virus were conducted in the state animal health laboratories. The assays included detection of the matrix gene of Influenza A virus and neuraminidase gene specific for 2009 H1N1 virus. Samples were positive for both screening assays. The samples were confirmed positive by the National Veterinary Services Laboratories. The history of illness in family members prior to illness in the ferrets suggests that Influenza A virus was transmitted from humans to the ferrets.


Asunto(s)
Gripe Humana/transmisión , Infecciones por Orthomyxoviridae/diagnóstico , Animales , Animales Domésticos/virología , Transmisión de Enfermedad Infecciosa/veterinaria , Hurones , Hemaglutininas Virales/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Neuraminidasa/genética , Oregon , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/transmisión , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda