RESUMEN
A highly sensitive and selective NH3 gas sensor was developed based on single-layer pristine graphene doped with copper(II) oxide (CuO) nanoparticles of a specific size. High-quality single-layer graphene was grown using chemical vapor deposition. Approximately 15 nm-sized CuO colloidal nanoparticles were fabricated by a microwave-assisted thermal method using copper acetate as the precursor, and dimethylformamide as the reducing and stabilizing agent. Pristine graphene was doped with an aqueous suspension of CuO nanoparticles at a coating speed of 1500 rpm using a simple spin coater. CuO nanoparticle doping induces changes in the electronic properties of graphene; in particular, p-type doping significantly altered graphene resistivity in the presence of NH3 gas. Upon exposure of the pristine graphene surface to NH3 gas, NH3 reacted with O2-/ O-/ O2- species on the graphene surface and released electrons into graphene. This caused a change in the concentration of charge carriers in the valence channel of graphene and an increase in graphene resistivity, facilitating real-time NH3 monitoring with quick response and rapid recovery at 25 â and ~ 55% relative humidity. Our results indicated that graphene doped with ~ 15 nm-sized CuO nanoparticles can sense NH3 gas selectively with a resistivity response of ~ 83%. Moreover, the sensor exhibited good reusability, fast response (~ 19 s), and rapid recovery (~ 277 s) with a detection limit of 0.041 ppm and a relative standard deviation of 0.76%.
RESUMEN
Airborne microbes can rapidly spread and cause various infectious diseases worldwide. This necessitates the determination of a fast and highly sensitive detection method. There have been no studies on receptors targeting Citrobacter braakii (C. braakii), a pathogenic bacterium which can exist in the air. In this study, we rapidly isolate an aptamer, a nucleic acid molecule that can specifically bind to C. braakii by centrifugation-based partitioning method (CBPM) reported previously by our groups as omitting the repeated rounds of binding incubation, separation, and amplification that are indispensable for SELEX. The binding affinity and specificity of isolated aptamers are checked using bacteria in liquid culture and recollection solution from aerosolized bacteria. Recollection solutions of the recovered bacteria are obtained by nebulizing, drying, and recapturing with a biosampler. The CB-5 aptamer shows high affinity and specificity for C. braakii (Kd: 16.42 in liquid culture and 26.91 nM in recollection from aerosolized sample). Our results indicate the current protocol can be employed for the rapid development of reliable diagnostic receptors targeting airborne bacteria.
Asunto(s)
Aptámeros de Nucleótidos , Ácidos Nucleicos , Aptámeros de Nucleótidos/química , Bacterias , Técnica SELEX de Producción de Aptámeros/métodosRESUMEN
We synthesized an alcohol-based liquid scintillator (AbLS), and we implemented an auxiliary monitoring system with short calibration intervals using AbLS for particle therapy. The commercial liquid scintillator used in previous studies did not allow the user to control the chemical ratio and its composition. In our study, the chemical ratio of AbLS was freely controlled by simultaneously mixing water and alcohol. To make an equivalent substance to the human body, 2-ethoxyethanol was used. There was no significant difference between AbLS and water in areal density. As an application of AbLS, the range was measured with AbLS using an electron beam in an image analysis that combined AbLS and a digital phone camera. Given a range-energy relationship for the electron expressed as areal density, the electron beam range (cm) in water can be easily estimated. To date, no literature report for the direct comparison of a pixel image analysis and Monte Carlo (MC) simulation has been published. Furthermore, optical tomography of the inverse problem was performed with AbLS and a mobile phone camera. Analyses of optical tomography images provide deeper insight into Radon transformation. In addition, the human phantom, which is difficult to compose with semiconductor diodes, was easily implemented as an image acquisition and analysis system.
Asunto(s)
Electrones , Procesamiento de Imagen Asistido por Computador , Humanos , Método de Montecarlo , Fantasmas de Imagen , AguaRESUMEN
Cronobacter sakazakii (C. sakazakii) is a foodborne pathogen associated with bacterial meningitis, sepsis, and necrotizing enterocolitis in premature and immuno-compromised infants. C. sakazakii is typically acquired by ingesting contaminated powdered infant formula (PIF). The growing demand for a safe food supply requires rapid detection of foodborne pathogens for delivering safe-to-consume food to consumers. In the present study, we isolated C. sakazakii-specific aptamers using a centrifugation-based partitioning method (CBPM) instead of systematic evolution of ligands by exponential enrichment (SELEX) process. Unlike SELEX, the CBPM reduces the evolution-loop time to obtain enriched probes, allowing the isolation of target-specific aptamers in a shorter time. The two aptamers (SC25 and SC45) isolated using the CBPM showed high affinity and specificity for C. sakazakii (Kd: 34 and 66 nM). Among the two aptamers, SC25 aptamer detected efficiently C. sakazakii in PIF with less cross-reactivity. Our results indicate that the isolated aptamers could be used for detecting C. sakazakii in PIF and reducing the overall testing time compared with the conventional C. sakazakii detection method.
Asunto(s)
Cronobacter sakazakii , Cronobacter sakazakii/genética , ADN de Cadena Simple , Microbiología de Alimentos , Humanos , Lactante , Fórmulas Infantiles , Recién Nacido , Oligonucleótidos , PolvosRESUMEN
Correction for 'Specific detection of Cronobacter sakazakii in powdered infant formula using ssDNA aptamer' by Hye Ri Kim et al., Analyst, 2021, 146, 3534-3542, DOI: .
RESUMEN
The novel strain AM35T was isolated from the faeces of C57BL/6 mice. These cells are strictly anaerobic, gram negative, oxidase negative, catalase positive, rod-shaped and non-motile. The strain produced creamy yellowish colonies on brain heart infusion (BHI) agar with hemin. Growth was investigated at 30-41 °C in the presence of 0.5-1.5% (w/v) NaCl at pH 6.5-8.5. Taxonomic analysis based on 16S rRNA gene sequencing revealed that strain AM35T is affiliated with the family Muribaculaceae and closely related to the genus Muribaculum. The genomic DNA G + C content of strain AM35T was 47.8 mol%. We detected the whole-cell sugars ribose and galactose; meso-2,6-diaminopimelic acid was absent. The major fatty acids (> 10%) were anteiso-C15:0 and iso-C15:0; the major polar lipid was phosphatidylethanolamine. The major respiratory quinones were MK-10 and MK-11. Based on our phylogenetic, phenotypic and chemotaxonomic analyses, strain AM35T represents a novel genus within the family Muribaculaceae, for which we propose the name Heminiphilus faecis gen. nov., sp. nov. The type strain of Heminiphilus faecis gen. nov., sp. nov. is AM35T (= KCTC 15907 T = DSM 110151 T).
Asunto(s)
Ácidos Grasos , Fosfolípidos , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Heces , Ratones , Ratones Endogámicos C57BL , Fosfolípidos/análisis , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2RESUMEN
Commensal microbiota are well known to play an important role in antiviral immunity by providing immune inductive signals; however, the consequence of dysbiosis on antiviral immunity remains unclear. We demonstrate that dysbiosis caused by oral antibiotic treatment directly impairs antiviral immunity following viral infection of the vaginal mucosa. Antibiotic-treated mice succumbed to mucosal herpes simplex virus type 2 infection more rapidly than water-fed mice, and also showed delayed viral clearance at the site of infection. However, innate immune responses, including type I IFN and proinflammatory cytokine production at infection sites, as well as induction of virus-specific CD4 and CD8 T-cell responses in draining lymph nodes, were not impaired in antibiotic-treated mice. By screening the factors controlling antiviral immunity, we found that IL-33, an alarmin released in response to tissue damage, was secreted from vaginal epithelium after the depletion of commensal microbiota. This cytokine suppresses local antiviral immunity by blocking the migration of effector T cells to the vaginal tissue, thereby inhibiting the production of IFN-γ, a critical cytokine for antiviral defense, at local infection sites. These findings provide insight into the mechanisms of homeostasis maintained by commensal bacteria, and reveal a deleterious consequence of dysbiosis in antiviral immune defense.
Asunto(s)
Antivirales/inmunología , Disbiosis/complicaciones , Inmunidad Innata , Interleucina-33/metabolismo , Membrana Mucosa/patología , Vagina/inmunología , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Recuento de Colonia Microbiana , Eosinófilos/efectos de los fármacos , Eosinófilos/metabolismo , Femenino , Herpes Genital/inmunología , Herpes Genital/patología , Herpes Genital/virología , Herpesvirus Humano 2/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Interferón gamma/biosíntesis , Ratones Endogámicos C57BL , Microbiota/efectos de los fármacos , Membrana Mucosa/inmunología , Membrana Mucosa/virología , Péptido Hidrolasas/metabolismo , Linfocitos T/efectos de los fármacos , Vagina/efectos de los fármacos , Vagina/patología , Vagina/virologíaRESUMEN
A novel actinobacterial strain, AD1-86T, was isolated from the vaginal fluid of a Korean female and was characterized by a polyphasic approach. The strain was a facultatively anaerobic, Gram-stain-positive, non-spore-forming, non-motile, catalase-positive and oxidase-negative short rod. Colonies were creamy white, of low convexity and 1-2âmm in diameter after growth on DSM 92 agar plates at 37 °C for 2âdays. The most closely related strains were Dermabacter hominis DSM 7083T and Helcobacillus massiliensis 6401990T (98.3 and 96.3 % 16S rRNA gene sequence similarity, respectively). The isolate grew optimally at 37 °C and pH 7 in the presence of 0.5% (w/v) NaCl. The cell-wall peptidoglycan contained meso-diaminopimelic acid and the cell-wall hydrolysates contained ribose, galactose and glucose. The DNA G+C content was 62.6âmol% and the mean DNA-DNA relatedness value of the isolate to D. hominis DSM 7083T was 31.1±3.0% (reciprocal: 48.2±5.3%). The major cellular fatty acids (>10%) were anteiso-C17:0, anteiso-C15:0 and iso-C16:0, and the menaquinones were MK-9, MK-8 and MK-7. The polar lipid profile of strain AD1-86T consisted of diphosphatidylglycerol, phosphatidylglycerol, two aminolipids and a glycolipid. Data from this polyphasic study indicate that strain AD1-86T represents a novel species of the genus Dermabacter, for which the name Dermabacter vaginalis sp. nov. is proposed; the type strain is AD1-86T (=KCTC 39585T=DSM 100050T).
Asunto(s)
Actinomycetales/clasificación , Filogenia , Vagina/microbiología , Actinomycetales/genética , Actinomycetales/aislamiento & purificación , Pueblo Asiatico , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Femenino , Glucolípidos/química , Humanos , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Vitamina K 2/químicaRESUMEN
A novel bacterial strain, SR79T, was isolated from a Korean faecal sample and characterized using a polyphasic approach. SR79T was found to be a strictly anaerobic, Gram-stain-positive, non-spore-forming, non-motile, catalase- and oxidase-negative short rod with no flagella. SR79T grew optimally at 37 °C in the presence of 0.5 % (w/v) NaCl at pH 7. The NaCl range for growth was 0-1 % (w/v). The isolate produced butyric acid (>18 mM) as a major end product. A phylogenetic analysis based on 16S rRNA gene sequences revealed that the most closely related type strains were Eubacteriumdesmolans ATCC 43058T and Butyricicoccus pullicaecorum 25-3T (96.4 and 96.0 % similarity, respectively). The DNA G+C content was determined to be 52.9 mol%. The major cellular fatty acids (>10 %) were C16 : 0, C18 : 1cis-9, C19 : 1 cyc 9,10 and C14 : 0. Meso-diaminopimelic acid was present in the cell wall peptidoglycan and the cell wall hydrolysates contained ribose, glucose and galactose. The 16S rRNA gene sequence similarity, phylogenetic analysis, chemotaxonomic and phenotypic characteristics allowed differentiation of SR79T, which represents a novel species of a new genus within the family Ruminococcaceae, for which the name Agathobaculum butyriciproducens gen. nov. sp. nov. is proposed. The type strain is SR79T (=KCTC 15532T=DSM 100391T). Based on the results of this study, it is also proposed to transfer Eubacteriumdesmolans to this new genus, as Agathobaculum desmolans comb. nov. The type strain of Agathobaculum desmolans is ATCC 43058T (=CCUG 27818T).
Asunto(s)
Eubacterium/clasificación , Heces/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , Butiratos/metabolismo , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Eubacterium/genética , Eubacterium/aislamiento & purificación , Ácidos Grasos/química , Humanos , Peptidoglicano/química , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADNRESUMEN
Two bacterial strains, 46-1 and 46-2T, were isolated from garden soil. These strains were observed to be aerobic, Gram-stain negative, rod-shaped, non-spore-forming, motile and catalase and oxidase positive. Phylogenetic analysis based on 16S rRNA gene sequences showed that the two strains shared 100 % sequence similarity with each other and belong to the genus Pseudomonas in the class Gammaproteobacteria. The concatenated 16S rRNA, gyrB, rpoB and rpoD gene sequences further confirmed that the isolates belong to the Pseudomonas koreensis subgroup (SG), with P. koreensis Ps 9-14T, Pseudomonas moraviensis 1B4T and Pseudomonas granadensis F-278,770T as their close relatives (>96 % pairwise similarity). DNA-DNA hybridization with the closely related type strain P. koreensis SG revealed a low level of relatedness (<50 %). A cladogram constructed using whole-cell matrix-assisted laser desorption/ionization time-of-flight (WC-MALDI-TOF) MS analysis showed the isolates formed a completely separate monophyletic group. The isolates were negative for utilization of glycogen, D-psicose, α-keto butyric acid, α-keto valeric acid, succinamic acid and D, L-α-glycerol phosphate. In contrast, all these reactions were positive in P. koreensis JCM 14769T and P. moraviensis DSM 16007T. The fatty acid C17:0 cyclo was detected as one of the major cellular fatty acids (>15 %) in the isolates but it was a minor component (<4 %) in both reference type strains. In contrast, the fatty acid, C12:0 was not observed in the isolates but was present in both reference strains. Based on differences such as phylogenetic position, low-level DNA-DNA hybridization, WC-MALDI-TOF MS analysis, fluorescence pigmentation, fatty acid profiles, and substrate utilization, we propose that the isolates 46-1 and 46-2T represent a novel species of the genus Pseudomonas, for which the name Pseudomonas kribbensis sp. nov. is proposed; the type strain is 46-2T (=KCTC 32541T = DSM 100278T).
Asunto(s)
Pseudomonas/aislamiento & purificación , Microbiología del Suelo , Composición de Base , ADN Bacteriano , Jardines , Tipificación Molecular , Filogenia , Pseudomonas/clasificación , Pseudomonas/genética , Pseudomonas/ultraestructura , ARN Bacteriano , ARN Ribosómico 16S/genética , República de CoreaRESUMEN
A dark-pink-coloured bacterial strain, B4Y-8T, was isolated from a soil cultivated with ginseng. The 16S rRNA gene sequence of this strain showed highest similarity with Mucilaginibacter litoreus BR-18T (96.8 %), Mucilaginibacter lutimaris BR-3T (96.6 %) and Mucilaginibacter defluvii A5T (96.2 %) among the type strains of species of the genus Mucilaginibacter. Strain B4Y-8T was a strictly aerobic, Gram-stain-negative, non-motile, short-rod-shaped bacterium producing a large amount of extracellular polymeric substance. The strain grew at 10-35 °C (optimum, 25 °C), at pH 3.0-11.0 (optimum, pH 7.0) and in the presence of 0-1 % (w/v) NaCl (optimum, 0 %). The DNA G+C content of strain B4Y-8T was 49.0âmol%. It contained menaquinone 7 (MK-7) as the major isoprenoid quinone, and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) and iso-C15 : 0 as the major fatty acids. On the basis of evidence from the present polyphasic taxonomic study, strain B4Y-8T should be classified as representing a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter ginsengisoli sp. nov. is proposed. The type strain is B4Y-8T ( = KACC 18152T = JCM 30759T).
Asunto(s)
Bacteroidetes/clasificación , Panax , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMEN
A novel, Gram-stain positive, facultative anaerobic, non-motile and straight to curve rod shaped bacterium, strain LV19(T) was isolated from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus, which was collected from Yeong-dong, Chuncheongbuk-do, South Korea. The colonies of the new isolate were convex, circular, cream white in color and 1-2 mm in diameter after 3 days incubation on Tryptic Soy Agar at 37 °C. Based on the 16S rRNA gene sequence similarity, the new isolate was most closely related to Erysipelothrix inopinata MF-EP02(T), E. rhusiopathiae ATCC 19414 (T) and E. tonsillarum T-305(T) (94.8, 93.8 and 93.7 % similarity, respectively). Strain LV19(T) grew optimally at 37 °C, at pH 8.0 and in the presence of 0.5 % (w/v) NaCl. Oxidase activity and catalase activity were negative. The major cellular fatty acids (>10 %) were C18:2 cis-9,12 (28.9 %), C18:1 cis-9 (22.3 %), C16:0 (22.2 %) and C18:0 (18.5 %). The cell-wall hydrolysates contained ribose as a major sugar. Major polar lipids were phosphatidylglycerol and three unidentified glycolipids. No quinone was detected. The G+C content of the genomic DNA was 36.3 mol%. The levels of DNA-DNA relatedness between strain LV19(T) and all the reference strains were less than 20 %. On the basis of polyphasic evidence from this study, the isolate is considered to represent a novel species of the genus Erysipelothrix, for which the name Erysipelothrix larvae sp. nov. is proposed; the type strain is LV19(T) (=KCTC 33523(T) = DSM 28480(T)).
Asunto(s)
Erysipelothrix/clasificación , Erysipelothrix/aislamiento & purificación , Anaerobiosis , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , Carbohidratos/análisis , Análisis por Conglomerados , Escarabajos/microbiología , Citosol/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Ácidos Grasos/análisis , Tracto Gastrointestinal/microbiología , Glucolípidos/análisis , Concentración de Iones de Hidrógeno , Corea (Geográfico) , Larva/microbiología , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Fosfolípidos/análisis , Filogenia , Quinonas/análisis , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Cloruro de Sodio/metabolismo , TemperaturaRESUMEN
A novel strictly anaerobic strain, ALO17(T), was isolated from mouse faeces and found to produce lactic acid as a major metabolic end product. The isolate was observed to be Gram-stain positive, non-motile, non-spore forming small rods, oxidase and catalase negative, and to form cream-coloured colonies on DSM 104 agar plates. The NaCl range for growth was determined to be 0-2 % (w/v). The isolate was found to grow optimally at 37 °C, with 0.5 % (w/v) NaCl and at pH 7. The cell wall hydrolysates were found to contain ribose as a major sugar. The genomic DNA G+C content was determined to be 52.3 mol%. A phylogenetic analysis of the 16S rRNA gene sequence revealed that Holdemanella biformis DSM 3989(T), Faecalicoccus pleomorphus ATCC 29734(T), Faecalitalea cylindroides ATCC 27803(T), and Allobaculum stercoricanis DSM 13633(T) are closely related to the isolate (87.4, 87.3, 86.9 and 86.9 % sequence similarity), respectively. The major cellular fatty acids (>10 %) of the isolate were identified as C18:1 cis 9 FAME (36.9 %), C16:0 FAME (33.7 %) and C18:0 FAME (13.2 %). In contrast to the tested reference strains, C20:0 FAME (4.0 %) was detected only in strain ALO17(T) whilst C16:0 DMA was absent. The isolate also differed in its substrate oxidation profiles from the reference strains by being positive for D-melibiose and stachyose but negative for N-acetyl-D-galactosamine and 3-methyl-D-glucose. On the basis of polyphasic taxonomic evidence from this study, the isolate is concluded to belong to a novel genus within the family Erysipelothricaceae. We propose the name Faecalibaculum rodentium gen. nov., sp. nov. to accommodate strain ALO17(T) (=KCTC 15484(T) = JCM 30274(T)) as the type strain.
Asunto(s)
Heces/microbiología , Firmicutes/clasificación , Firmicutes/aislamiento & purificación , Anaerobiosis , Animales , Composición de Base , Carbohidratos/análisis , Análisis por Conglomerados , Citosol/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Ácidos Grasos/análisis , Firmicutes/genética , Firmicutes/fisiología , Concentración de Iones de Hidrógeno , Ácido Láctico/metabolismo , Ratones , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Cloruro de Sodio/metabolismo , TemperaturaRESUMEN
Two novel bacterial strains, GH2-4T and GH2-5, were isolated from mangrove soil near the seashore of Weno island in Chuuk state, Micronesia, and were characterized by a polyphasic approach. The two strains were strictly aerobic, Gram-staining-positive, motile, endospore-forming rods that were catalase- and oxidase-positive. Colonies were circular, convex, stringy and transparent yellowish (GH2-4T) or opaque whitish (GH2-5). The 16S rRNA gene sequences of the two isolates were identical. The most closely related strains in terms of 16S rRNA gene sequence similarity were Bacillus kochii WCC 4582T, B. horneckiae DSM 23495T, B. azotoformans LMG 9581T, B. cohnii DSM 6307T and B. halmapalus DSM 8723T (95.6, 95.4, 95.4, 95.2 and 95.2% similarity, respectively). The partial groEL sequence of strain GH2-4T was identical to that of strain GH2-5 and showed <85% similarity to those of the most closely related strains. The isolates grew at pH 5-12 (optimal growth at pH 9), at 10-40 °C (optimum 30-35 °C) and at 0-9% (w/v) NaCl (optimum 1-3% NaCl). The cell-wall peptidoglycan of strains GH2-4T and GH2-5 contained meso-diaminopimelic acid and cell-wall hydrolysates contained ribose as a major sugar. The DNA G+C content was 36 mol%, and DNA-DNA relatedness between the isolates and five related reference strains was 20-24%. Strain GH2-4T exhibited 81% DNA-DNA relatedness with strain GH2-5. The major cellular fatty acids of both strains were iso-C15:0, iso-C16:0, iso-C14:0 and anteiso-C15:0 and the predominant menaquinone was MK-7. On the basis of the evidence from this polyphasic study, strains GH2-4T and GH2-5 (=KCTC 33143=JCM 18995=DSM 27084) represent a novel species of the genus Bacillus, for which the name Bacillus solimangrovi sp. nov. is proposed; the type strain is GH2-4T (=KCTC 33142T=JCM 18994T=DSM 27083T).
Asunto(s)
Avicennia/microbiología , Bacillus/clasificación , Filogenia , Microbiología del Suelo , Bacillus/genética , Bacillus/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , Chaperonina 60/genética , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Genes Bacterianos , Micronesia , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Peptidoglicano/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMEN
The use of genetically engineered bioluminescent bacteria, in which bioluminescence is induced by different modes of toxic action, represents an alternative to acute toxicity tests using living aquatic organisms (plants, vertebrates, or invertebrates) in an aqueous environment. A number of these bacterial strains have been developed, but there have been no attempts to develop a hand-held type of biosensor for monitoring or identification of toxicity. We report a facile dip-stick type biosensor using genetically engineered bioluminescent bacteria as a new platform for classification and identification of toxicity in water environments. This dip-stick type biosensor is composed of eight different optically color-coded functional alginate beads that each encapsulates a different bioluminescent bacterial strain and its corresponding fluorescent microbead. These color-coded microbeads exhibit easy identification of encapsulated microbeads, since each microbead has a different color code depending on the bioluminescent bacterial strain contained and improved cell-stability compared to liquid culture. This dip-stick type biosensor can discriminate different modes of toxic actions (i.e. DNA damage, oxidative damage, cell-membrane damage, or protein damage) of sample water tested by simply dipping the stick into the water samples. It was found that each color-coded microbead emitted distinct bioluminescence, and each dip-stick type biosensor showed different bioluminescence patterns within 2 hours, depending on the toxic chemicals contained in LB medium, tap water, or river water samples. This dip-stick type biosensor can, therefore, be widely and practically used in checking toxicity of water in the environment primarily in situ, possibly indicating the status of biodiversity.
Asunto(s)
Alginatos/química , Técnicas Biosensibles/instrumentación , Monitoreo del Ambiente/instrumentación , Photorhabdus/metabolismo , Vibrio/metabolismo , Contaminantes Químicos del Agua/análisis , Agua Potable/análisis , Diseño de Equipo , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Mediciones Luminiscentes/instrumentación , Photorhabdus/efectos de los fármacos , Ríos/química , Vibrio/efectos de los fármacos , Agua/análisis , Contaminantes Químicos del Agua/metabolismoRESUMEN
We have developed a highly sensitive and selective colorimetric method for detection of acetylcholine (ACh), using a tandem enzymatic reaction for biological target recognition and silver nanoplates (AgNPLs) for optical signal generation. The ACh molecules are enzymatically hydrolyzed and oxidized into betaine and hydrogen peroxide, the latter of which chemically oxidizes the AgNPLs to generate the "turn-on" signal. To optimize detection sensitivity, the chemical and biological properties of the detection mixtures containing the enzymes, ACh, and AgNPLs were thoroughly investigated with respect to component concentrations and reaction temperatures; a maximum sensitivity of 500 nM for colorimetric detection of ACh was achieved. We further directly compared the signaling profiles of (1) novel nanostructured and (2) conventional molecular chromogens, improving our understanding of the factors that should be considered when designing a detection system.
Asunto(s)
Acetilcolina/análisis , Acetilcolina/química , Colorimetría/métodos , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Plata/química , Resonancia por Plasmón de Superficie/métodos , Tamaño de la Partícula , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Plata/análisisRESUMEN
The demand for glucose-sensing devices has increased along with the increasing diabetic population. Here, we aimed to construct a system with a glucose oxidase (GOx)-integrated Cu-nanoflower (Cu-NF) as the underlying electrode. This novel system was successfully developed by creating a cross-linked GOx within a Cu-NF matrix, forming a c-GOx@Cu-NF-coated film on a carbon screen-printed electrode (CSPE). A comparison of the stabilities of the cross-linking methods demonstrated enhanced durability, with an activity level of >88 % maintained after approximately 35 days of storage in room temperature buffer. Regarding the ability of the c-GOx@Cu-NF modified CSPE to detect glucose via electrochemical methods, the redox potential gap (ΔE) and peak current increased in the presence of GOx. In comparison to that of glucose, the sensitivity of c-GOx@Cu-NF was approximately 8 times greater than that of GOx@Cu-NF, with a detection limit of 0.649 µM and a linear range of 5-500 µM. It sustained an average relative activity of 80 % over 20 days. After 10 cycles of repeated use, the activity remained above 75 %. In terms of evaluating the electrode's specificity for glucose, the detection rate for individual similar substances was approximately 1 %. The introduction of a crosslinking strategy to Cu-NF, leading to enhanced mechanical stability and conductivity, improved the detection capability. Furthermore, this approach led to increased long-term storage stability and reusability, allowing for specific glucose detection. To our knowledge, this report represents the first demonstration of a c-GOx@Cu-NF system for integrating electrochemical biosensing devices into digital healthcare pathways, offering enhanced sensing accuracy and mechanical stability.
Asunto(s)
Técnicas Biosensibles , Cobre , Electrodos , Glucosa Oxidasa , Glucosa , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Cobre/química , Técnicas Biosensibles/métodos , Glucosa/análisis , Técnicas Electroquímicas/métodos , Enzimas Inmovilizadas/química , Límite de Detección , Nanoestructuras/químicaRESUMEN
Aptamers are a versatile class of receptors with a high affinity and selectivity for specific targets. Although their ability to recognize individual targets has been extensively studied, some scenarios require the development of receptors capable of identifying all target groups. This study investigated the use of aptamers to achieve the broad-spectrum recognition of groups instead of individual targets. Aptamers were screened for selectively distinct groups of Cronobacter species associated with foodborne diseases. Seven Cronobacter spp. were divided into Group A (C. sakazakii, C. malonaticus, C. turicensis, and C. muytjensii) and Group B (C. dublinensis, C. condimenti, and C. universalis). Aptamers with exclusive selectivity for each group were identified, allowing binding to the species within their designated group while excluding those from the other group. The screened aptamers demonstrated reliable affinity and specificity with dissociation constants ranging from 1.3 to 399.7 nM for Group A and 4.0-24.5 nM for Group B. These aptamers have also been successfully employed as receptors in an electrochemical biosensor platform, enabling the selective detection of each group based on the corresponding aptamer (limit of detection was 7.8 and 3.2 CFU for Group A and Group B, respectively). The electrochemical sensor effectively detected the extent of infection in each group in powdered infant formula samples. This study highlights the successful screening and application of group-selective aptamers as sensing receptors, emphasizing their potential for diverse applications in different fields such as food safety, environmental monitoring, and clinical diagnostics, where the selective biosensing of target groups is crucial.
Asunto(s)
Técnicas Biosensibles , Cronobacter sakazakii , Cronobacter , Humanos , Lactante , Oligonucleótidos , Fórmulas InfantilesRESUMEN
AIMS: The gut microbiota is increasingly recognised as a pivotal regulator of immune system homeostasis and brain health. Recent research has implicated the gut microbiota in age-related cognitive impairment and dementia. Agathobaculum butyriciproducens SR79 T (SR79), which was identified in the human gut, has been reported to be beneficial in addressing cognitive deficits and pathophysiologies in a mouse model of Alzheimer's disease. However, it remains unknown whether SR79 affects age-dependent cognitive impairment. MAIN METHOD: To explore the effects of SR79 on cognitive function during ageing, we administered SR79 to aged mice. Ageing-associated behavioural alterations were examined using the open field test (OFT), tail suspension test (TST), novel object recognition test (NORT), Y-maze alternation test (Y-maze), and Morris water maze test (MWM). We investigated the mechanisms of action in the gut and brain using molecular and histological analyses. KEY FINDINGS: Administration of SR79 improved age-related cognitive impairment without altering general locomotor activity or depressive behaviour in aged mice. Furthermore, SR79 increased mature dendritic spines in the pyramidal cells of layer III and phosphorylation of CaMKIIα in the cortex of aged mice. Age-related activation of astrocytes in the cortex of layers III-V of the aged brain was reduced following SR79 administration. Additionally, SR79 markedly increased IL-10 production and Foxp3 and Muc2 mRNA expression in the colons of aged mice. SIGNIFICANCE: These findings suggest that treatment with SR79 may be a beneficial microbial-based approach for enhancing cognitive function during ageing.
Asunto(s)
Clostridiales , Trastornos del Conocimiento , Disfunción Cognitiva , Ratones , Humanos , Animales , Anciano , Trastornos del Conocimiento/metabolismo , Encéfalo/metabolismo , Envejecimiento/metabolismoRESUMEN
Akkermansia muciniphila has received great attention because of its beneficial roles in gut health by regulating gut immunity, promoting intestinal epithelial development, and improving barrier integrity. However, A. muciniphila-derived functional molecules regulating gut health are not well understood. Microbiome-secreted proteins act as key arbitrators of host-microbiome crosstalk through interactions with host cells in the gut and are important for understanding host-microbiome relationships. Herein, we report the biological function of Amuc_1409, a previously uncharacterised A. muciniphila-secreted protein. Amuc_1409 increased intestinal stem cell (ISC) proliferation and regeneration in ex vivo intestinal organoids and in vivo models of radiation- or chemotherapeutic drug-induced intestinal injury and natural aging with male mice. Mechanistically, Amuc_1409 promoted E-cadherin/ß-catenin complex dissociation via interaction with E-cadherin, resulting in the activation of Wnt/ß-catenin signaling. Our results demonstrate that Amuc_1409 plays a crucial role in intestinal homeostasis by regulating ISC activity in an E-cadherin-dependent manner and is a promising biomolecule for improving and maintaining gut health.