Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000932

RESUMEN

This paper proposed a fine dust detection system using time-interleaved counters in which surface acoustic wave (SAW) sensors changed the resonance point characteristic. When fine dust was applied to the SAW sensor, the resonance point decreased. The SAW oscillator made of the SAW sensor and radio frequency (RF) amplifier generated an oscillation frequency that was the same as the resonance frequency. The oscillation frequency was transferred to digital data by a 20-bit asynchronous counter. This system has two channels: a sensing channel and a reference channel. Each channel has a SAW oscillator and a 20-bit asynchronous counter. The difference of the two channel counter results is the frequency difference. Through this, it is possible to know whether fine dust adheres to the SAW sensor. The proposed circuit achieved 0.95 ppm frequency resolution when it was operated at a frequency of 460 MHz. This circuit was implemented in a TSMC 130 nm CMOS process.

2.
Int J Mol Sci ; 21(22)2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33207738

RESUMEN

USP7 is a promising target for the development of cancer treatments because of its high expression and the critical functions of its substrates in carcinogenesis of several different carcinomas. Here, we demonstrated the effectiveness of targeting USP7 in advanced malignant cells showing high levels of USP7, especially in taxane-resistant cancer. USP7 knockdown effectively induced cell death in several cancer cells of lung, prostate, and cervix. Depletion of USP7 induced multiple spindle pole formation in mitosis, and, consequently, resulted in mitotic catastrophe. When USP7 was blocked in the paclitaxel-resistant lung cancer NCI-H460TXR cells, which has resistance to mitotic catastrophe, NCI-H460TXR cells underwent apoptosis effectively. Furthermore, combination treatment with the mitotic kinase PLK1 inhibitor volasertib and the USP7 inhibitor P22077 showed a strong synergism through down-regulation of MDR1/ABCB1 in paclitaxel-resistant lung cancer. Therefore, we suggest USP7 is a promising target for cancer therapy, and combination therapy with inhibitors of PLK1 and USP7 may be valuable for treating paclitaxel-resistant cancers, because of their strong synergism.


Asunto(s)
Proteínas de Ciclo Celular , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias , Paclitaxel/farmacología , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Pteridinas/farmacología , Tiofenos/farmacología , Peptidasa Específica de Ubiquitina 7 , Células A549 , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/patología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores , Peptidasa Específica de Ubiquitina 7/genética , Quinasa Tipo Polo 1
3.
Theranostics ; 13(3): 1198-1216, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793862

RESUMEN

Rationale: ß-catenin is a component for cell adhesion and a transcriptional coactivator in epithelial-mesenchymal transition (EMT). Previously we found that catalytically active PLK1 drives EMT in non-small cell lung cancer (NSCLC), upregulating extracellular matrix factors including TSG6, laminin γ2, and CD44. To understand the underlying mechanism and clinical significance of PLK1 and ß-catenin in NSCLC, their relationship and function in metastatic regulation were investigated. Methods: The clinical relevance between the survival rate of NSCLC patients and the expression of PLK1 and ß-catenin was analyzed by a KM plot. Immunoprecipitation, kinase assay, LC-MS/MS spectrometry, and site-directed mutagenesis were performed to reveal their interaction and phosphorylation. A lentiviral doxycycline-inducible system, Transwell-based 3D culture, tail-vein injection model, confocal microscopy, and chromatin immunoprecipitation assays were used to elucidate the function of phosphorylated ß-catenin in the EMT of NSCLC. Results: Clinical analysis revealed that the high expression of CTNNB1/PLK1 was inversely correlated with the survival rates of 1,292 NSCLC patients, especially in metastatic NSCLC. In TGF-ß-induced or active PLK1-driven EMT, ß-catenin, PLK1, TSG6, laminin γ2, and CD44 were concurrently upregulated. ß-catenin is a binding partner of PLK1 in TGF-ß-induced EMT and is phosphorylated at S311. Phosphomimetic ß-catenin promotes cell motility, invasiveness of NSCLC cells, and metastasis in a tail-vein injection mouse model. Its upregulated stability by phosphorylation enhances transcriptional activity through nuclear translocation for the expression of laminin γ2, CD44, and c-Jun, therefore enhancing PLK1 expression by AP-1. Conclusions: Our findings provide evidence for the critical role of the PLK1/ß-catenin/AP-1 axis in metastatic NSCLC, implying that ß-catenin and PLK1 may serve as a molecular target and prognostic indicator of the therapeutic response in metastatic NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteínas Serina-Treonina Quinasas , beta Catenina , Animales , Ratones , beta Catenina/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Cromatografía Liquida , Matriz Extracelular/metabolismo , Laminina/metabolismo , Neoplasias Pulmonares/patología , Fosforilación , Espectrometría de Masas en Tándem , Factor de Transcripción AP-1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasa Tipo Polo 1
4.
J Exp Clin Cancer Res ; 42(1): 302, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37968723

RESUMEN

BACKGROUND: Understanding the mechanism behind immune cell plasticity in cancer metastasis is crucial for identifying key regulators. Previously we found that mitotic factors regulate epithelial-mesenchymal transition, but how these factors convert to metastatic players in the tumor microenvironment (TME) is not fully understood. METHODS: The clinical importance of mitotic factors was analyzed by heatmap analysis, a KM plot, and immunohistochemistry in lung adenocarcinoma (LUAD) patients. Immunoprecipitation, LC-MS/MS, kinase assay, and site-directed mutagenesis were performed for the interaction and phosphorylation. A tail-vein injection mouse model, Transwell-based 3D culture, microarray analysis, coculture with monocytes, and chromatin immunoprecipitation assays were used to elucidate the function of phosphorylated FoxM1 in metastasis of TME. RESULTS: The phosphorylated FoxM1 at Ser25 by PLK1 acquires the reprogramming ability to stimulate the invasive traits in cancer and influence immune cell plasticity. This invasive form of p-FoxM1 upregulates the expression of IL1A/1B, VEGFA, and IL6 by direct activation, recruiting monocytes and promoting the polarization of M2d-like tumor-associated macrophages (TAMs). Upregulation of PD-L1 in LUAD having phosphomimetic FoxM1 facilitates immune evasion. In invasive LUAD with phosphomimetic FoxM1, IFITM1 is the most highly expressed through the activation of the STING-TBK1-IRF3 signaling, which enhances FoxM1-mediated signaling. Clinically, higher expression of FOXM1, PLK1, and IFITM1 is inversely correlated with the survival rate of advanced LUAD patients, providing a promising therapeutic strategy for the treatment of LUAD. CONCLUSION: FoxM1-based therapy would be a potential therapeutic strategy for LUAD to reduce TAM polarization, immune escape, and metastasis, since FoxM1 functions as a genetic reprogramming factor reinforcing LUAD malignancy in the TME.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Animales , Ratones , Humanos , Factores de Transcripción Forkhead/metabolismo , Proteína Forkhead Box M1/genética , Macrófagos Asociados a Tumores/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Adenocarcinoma/patología , Neoplasias Pulmonares/genética , Microambiente Tumoral
5.
Exp Mol Med ; 54(4): 414-425, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379935

RESUMEN

Accumulating evidence indicates that mitotic protein kinases are involved in metastatic migration as well as tumorigenesis. Protein kinases and cytoskeletal proteins play a role in the efficient release of metastatic cells from a tumor mass in the tumor microenvironment, in addition to playing roles in mitosis. Mitotic protein kinases, including Polo-like kinase 1 (PLK1) and Aurora kinases, have been shown to be involved in metastasis in addition to cell proliferation and tumorigenesis, depending on the phosphorylation status and cellular context. Although the genetic programs underlying mitosis and metastasis are different, the same protein kinases and cytoskeletal proteins can participate in both mitosis and cell migration/invasion, resulting in migratory tumors. Cytoskeletal remodeling supports several cellular events, including cell division, movement, and migration. Thus, understanding the contributions of cytoskeletal proteins to the processes of cell division and metastatic motility is crucial for developing efficient therapeutic tools to treat cancer metastases. Here, we identify mitotic kinases that function in cancer metastasis as well as tumorigenesis. Several mitotic kinases, namely, PLK1, Aurora kinases, Rho-associated protein kinase 1, and integrin-linked kinase, are considered in this review, as an understanding of the shared machineries between mitosis and metastasis could be helpful for developing new strategies to treat cancer.


Asunto(s)
Neoplasias , Proteínas Quinasas , Aurora Quinasas/genética , Aurora Quinasas/metabolismo , Carcinogénesis , Proteínas de Ciclo Celular/genética , Proteínas del Citoesqueleto/metabolismo , Células HeLa , Humanos , Mitosis , Fosforilación , Proteínas Quinasas/metabolismo , Microambiente Tumoral
6.
Cell Death Differ ; 28(9): 2745-2764, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33963314

RESUMEN

The prerequisite function of vimentin for the epithelial-mesenchymal transition (EMT) is not clearly elucidated yet. Here, we show that vimentin phosphorylated by PLK1, triggers TGF-ß-signaling, which consequently leads to metastasis and PD-L1 expression for immune suppression in lung adenocarcinoma. The clinical correlation between expression of both vimentin and PLK1, and overall survival rates of patients was significant in lung adenocarcinoma but not in squamous cell carcinoma. The phosphorylation of vimentin was accompanied by the activation of PLK1 during TGF-ß-induced EMT in lung adenocarcinoma. Among the several phosphorylation sites determined by phospho-proteomic analysis and the site-specific mutagenesis, the phosphorylation at S339 displayed the most effective metastasis and tumourigenesis with the highest expression of PD-L1, compared with that of wild-type and other versions in both 3D cell culture and tail-vein injection metastasis models. Phosphomimetic vimentin at S339 interacted with p-Smad2 for its nuclear localization, leading to the expression of PD-L1. Clinical relevance revealed the inverse correlation between the survival rates of patients and the expressions of VIM, PLK1, and CD274 in primary and metastatic lung adenocarcinoma. Thus, PLK1-mediated phosphorylation of vimentin activates TGF-ß signaling pathway, leading to the metastasis and immune escape through the expression of PD-L1, functioning as a shuttling protein in lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/genética , Proteína Smad2/metabolismo , Escape del Tumor/genética , Vimentina/efectos adversos , Adenocarcinoma del Pulmón/patología , Animales , Humanos , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Pronóstico , Transducción de Señal , Microambiente Tumoral
7.
Ann Dermatol ; 33(6): 541-548, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34858005

RESUMEN

BACKGROUND: Sebocytes are the main cells involved in the pathogenesis of acne by producing lipids and inflammatory cytokines. Although palmitic acid (PA) has been suggested to induce an inflammatory reaction, its effect on sebocytes remains to be elucidated. OBJECTIVE: In the present study, we investigated whether PA promotes inflammasome-mediated inflammation of sebocytes both in vivo and in vitro. METHODS: We intradermally injected PA into the mice ears. And, we treated cultured human sebocytes with PA. Inflammasome-mediated inflammation was verified by immunohistochemistry, Western blot and ELISA. RESULTS: PA-treated mice developed an inflammatory response associated with increased interleukin (IL)-1ß expression in the sebaceous glands. When PA was added to cultured human sebocytes, caspase-1 activation and IL-1ß secretion were significantly enhanced. In addition, NLRP3 knockdown attenuated IL-1ß production by sebocytes stimulated with PA. PA-mediated inflammasome activation required reactive oxygen species. CONCLUSION: These findings indicate that PA activates the NLRP3 inflammasome before induction of an inflammatory response in sebocytes. Thus, PA may play a role in the inflammation of acne.

8.
J Oncol ; 2019: 5810465, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275381

RESUMEN

Epithelial-to-mesenchymal transition (EMT) is the first step in the development of the invasive and migratory properties of cancer metastasis. Since the transcriptional reprogramming of a number of genes occurs in EMT, the regulation of EMT transcription factors has been intensively investigated. EMT transcriptional factors are commonly classified by the direct or indirect repression of E-cadherin because one of hallmarks of EMT is the loss of E-cadherin. This facilitates the expression of genes for EMT, tumor invasion, and metastasis. The posttranslational modification of EMT transcriptional factors, such as Snail and Slug, directly regulates their functions, including their stability, nuclear localization, protein-protein interaction, and ubiquitination for the promotion or termination of EMT at the specific points. Here, we discuss how posttranslational modifications regulate gene expression in a dynamic and reversible manner by modifying upstream signaling pathways, focusing in particular on the posttranslational modifications of Snail, Slug, ZEB1, ZEB2, and TWIST1. This review demonstrates that EMT transcription factors regulate metastasis through their posttranslational modifications and that the flexibility and reversibility of EMT can be modified by phosphorylation.

9.
Eur J Pharm Biopharm ; 69(3): 1040-5, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18411045

RESUMEN

Despite the advantages of drug delivery through the skin, such as easy accessibility, convenience, prolonged therapy, avoidance of the liver first-pass metabolism and a large surface area, transdermal drug delivery is only used with a small subset of drugs because most compounds cannot cross the skin at therapeutically useful rates. Recently, a new concept was introduced known as microneedles and these could be pierced to effectively deliver drugs using micron-sized needles in a minimally invasive and painless manner. In this study, biocompatible polycarbonate (PC) microneedle arrays with various depths (200 and 500 microm) and densities (45, 99 and 154 ea/cm2) were fabricated using a micro-mechanical process. The skin permeability of a hydrophilic molecule, calcein (622.5D), was examined according to the delivery systems of microneedle, drug loading, depth of the PC microneedle, and density of the PC microneedle. The skin permeability of calcein was the highest when the calcein gel was applied to the skin with the 500 microm-depth PC microneedle, simultaneously. In addition, the skin permeability of calcein was the highest when 0.1g of calcein gel was coupled to the 500 microm-depth PC microneedle (154 ea/cm2) as well as longer microneedles and larger density of microneedles. Taken together, this study suggests that a biocompatible PC microneedle might be a suitable tool for transdermal drug delivery system of hydrophilic molecules with the possible applications to macromolecules such as proteins and peptides.


Asunto(s)
Fluoresceínas/administración & dosificación , Agujas , Administración Cutánea , Algoritmos , Animales , Química Farmacéutica , Sistemas de Liberación de Medicamentos , Fluoresceínas/química , Colorantes Fluorescentes , Geles , Técnicas In Vitro , Masculino , Modelos Estadísticos , Nanopartículas , Ratas , Ratas Sprague-Dawley , Absorción Cutánea , Espectrometría de Fluorescencia
12.
ACS Appl Mater Interfaces ; 6(14): 11544-9, 2014 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-25020188

RESUMEN

We report the fabrication of a flexible and binder-free metal fibril mat-supported Si anode (Si@SFM) by a simple process. The fabricated Si@SFM anode showed a high discharge capacity, ∼3000 mAh g(-1) at a current rate of 300 mA g(-1), and exhibited stable capacity retention, 90% at a 1 C rate (2000 mA g(-1)) after 200 cycles. The rate capability of the electrode was still high even when both the charge and the discharge current rates were markedly increased at the same time (1234 mAh g(-1) for charge-discharge time of ∼12 min). Moreover, owing to its mechanical flexibility, the Si@SFM can be adopted as a key component of flexible lithium-ion batteries (LIBs). After cell packaging, the rechargeable flexible battery under bending stress showed only a little capacity fading (86% of initial capacity) at 1000 mA g(-1) over 150 cycles. These results suggest that the Si@SFM electrode is readily suitable for use in rechargeable flexible LIBs.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda