RESUMEN
Under mild blue-light irradiation, α-acylated saturated heterocycles undergo a photomediated one-atom ring contraction that extrudes a heteroatom from the cyclic core. However, for nitrogenous heterocycles, this powerful skeletal edit has been limited to substrates bearing electron-withdrawing substituents on nitrogen. Moreover, the mechanism and wavelength-dependent efficiency of this transformation have remained unclear. In this work, we increased the electron richness of nitrogen in saturated azacycles to improve light absorption and strengthen critical intramolecular hydrogen bonding while enabling the direct installation of the photoreactive handle. As a result, a broadly expanded substrate scope, including underexplored electron-rich substrates and previously unsuccessful heterocycles, has now been achieved. The significantly improved yields and diastereoselectivities have facilitated reaction rate, kinetic isotope effect (KIE), and quenching studies, in addition to the determination of quantum yields. Guided by these studies, we propose a revised ET/PT mechanism for the ring contraction, which is additionally corroborated by computational characterization of the lowest-energy excited states of α-acylated substrates through time-dependent DFT. The efficiency of the ring contraction at wavelengths longer than those strongly absorbed by the substrates was investigated through wavelength-dependent rate measurements, which revealed a red shift of the photochemical action plot relative to substrate absorbance. The elucidated mechanistic and photophysical details effectively rationalize empirical observations, including additive effects, that were previously poorly understood. Our findings not only demonstrate enhanced synthetic utility of the photomediated ring contraction and shed light on mechanistic details but may also offer valuable guidance for understanding wavelength-dependent reactivity for related photochemical systems.
RESUMEN
Protein aggregation involves the assembly of partially misfolded proteins into oligomeric and higher-order structures that have been associated with several neurodegenerative diseases. However, numerous questions relating to protein aggregation remain unanswered due to the lack of available tools for visualization of these species in living cells. We recently developed a fluorogenic method named aggregation tag (AggTag), and presented the AggTag probe P1, based on a Halo-tag ligand, to report on the aggregation of a protein of interest (POI) in live cells. However, the Halo-tag-based AggTag method only detects the aggregation of one specific POI at a time. In this study, we have expanded the AggTag method by using SNAP-tag technology to enable fluorogenic and biorthogonal detection of the aggregation of two different POIs simultaneously in live cells. A new AggTag probe-P2, based on a SNAP-tag ligand bearing a green solvatochromic fluorophore-was synthesized for this purpose. Using confocal imaging and chemical crosslinking experiments, we confirmed that P2 can also report both on soluble oligomers and on insoluble aggregates of a POI fused with SNAP-tag in live cells. Ultimately, we showed that the orthogonal fluorescence of P1 and P2 allows for simultaneous visualization of two different pathogenic protein aggregates in the same cell.
Asunto(s)
Colorantes Fluorescentes/química , Proteínas/química , Fluorescencia , Células HEK293 , Humanos , LigandosRESUMEN
A light-driven multitasking catalyst enhances chirality in molecular mixtures.
RESUMEN
Medicinal chemistry continues to be impacted by new synthetic methods. Particularly sought after, especially at the drug discovery stage, is the ability to enact the desired chemical transformations in a concise and chemospecific fashion. To this end, the field of organic synthesis has become captivated by the idea of 'molecular editing'-to rapidly build onto, change or prune molecules one atom at a time using transformations that are mild and selective enough to be employed at the late stages of a synthetic sequence. In this Review, the definition and categorization of a particularly promising subclass of molecular editing reactions, termed 'single-atom skeletal editing', are proposed. Although skeletal editing applies to both cyclic and acyclic compounds, this Review focuses on heterocycles, both for their centrality in medicinal chemistry and for the definitional clarity afforded by a focus on ring systems. A classification system is presented by highlighting methods (both historically important examples and recent advances) that achieve such transformations, with the goal to spark interest and inspire further development in this growing field.
RESUMEN
Saturated heterocycles are found in numerous therapeutics and bioactive natural products and are abundant in many medicinal and agrochemical compound libraries. To access new chemical space and function, many methods for functionalization on the periphery of these structures have been developed. Comparatively fewer methods are known for restructuring their core framework. Herein, we describe a visible light-mediated ring contraction of α-acylated saturated heterocycles. This unconventional transformation is orthogonal to traditional ring contractions, challenging the paradigm for diversification of heterocycles including piperidine, morpholine, thiane, tetrahydropyran, and tetrahydroisoquinoline derivatives. The success of this Norrish type II variant rests on reactivity differences between photoreactive ketone groups in specific chemical environments. This strategy was applied to late-stage remodeling of pharmaceutical derivatives, peptides, and sugars.
RESUMEN
Strigolactones (SLs) are plant hormones that suppress shoot branching through perception by their receptor protein DWARF 14 (D14). The artificial regulation of SL signaling has been considered a potent agricultural technique because plant architecture is strongly related to crop yield. In this communication, we describe the development of a small-molecule D14 inhibitor that functions at sub-micromolar levels. This potent inhibitor may be a lead compound for a first-in-class plant growth regulator.