Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Trends Mol Med ; 30(1): 89-105, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37949787

RESUMEN

Aminoacyl-tRNA synthetases (ARSs) are enzymes that catalyze the ligation of amino acids to tRNAs for translation. Beyond their traditional role in translation, ARSs have acquired regulatory functions in various biological processes (epi-translational functions). With their dual-edged activities, aberrant expression, secretion, and mutations of ARSs are associated with human diseases, including cancer, autoimmune diseases, and neurological diseases. The increasing numbers of newly unveiled activities and disease associations of ARSs have spurred interest in novel drug development, targeting disease-related catalytic and noncatalytic activities of ARSs as well as harnessing ARSs as sources for biological therapeutics. This review speculates how the translational and epi-translational activities of ARSs can be related and describes how their activities can be linked to diseases and drug discovery.


Asunto(s)
Aminoacil-ARNt Sintetasas , Humanos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
2.
Nanoscale Adv ; 5(3): 640-649, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36756507

RESUMEN

Extracellular vesicles (EVs) have emerged as vehicles that mediate diverse cell-cell communication. However, in-depth understanding of these vesicles is hampered by a lack of a reliable isolation method to separate different types of EVs with high levels of integrity and purity. Here, we developed a nanoporous and ultra-thin membrane structure (NUTS) that warrants the size-based isolation of EVs without cake formation, minimizing the sample loss during the filtration process. By utilizing the micro-electro-mechanical systems (MEMS) technique, we could also control the pore size in nanoscale. We validated the performance of this membrane to separate EVs according to their size range.

3.
J Immunother Cancer ; 8(1)2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32461342

RESUMEN

BACKGROUND: The generation of antigen-specific cytotoxic T lymphocyte (CTL) responses is required for successful cancer vaccine therapy. In this regard, ligands of Toll-like receptors (TLRs) have been suggested to activate adaptive immune responses by modulating the function of antigen-presenting cells (APCs). Despite their therapeutic potential, the development of TLR ligands for immunotherapy is often hampered due to rapid systemic toxicity. Regarding the safety concerns of currently available TLR ligands, finding a new TLR agonist with potent efficacy and safety is needed. METHODS: A unique structural domain (UNE-C1) was identified as a novel TLR2/6 in the catalytic region of human cysteinyl-tRNA synthetase 1 (CARS1) using comprehensive approaches, including RNA sequencing, the human embryonic kidney (HEK)-TLR Blue system, pull-down, and ELISA. The potency of its immunoadjuvant properties was analyzed by assessing antigen-specific antibody and CTL responses. In addition, the efficacy of tumor growth inhibition and the presence of the tumor-infiltrating leukocytes were evaluated using E.G7-OVA and TC-1 mouse models. The combined effect of UNE-C1 with an immune checkpoint inhibitor, anti-CTLA-4 antibody, was also evaluated in vivo. The safety of UNE-C1 immunization was determined by monitoring splenomegaly and cytokine production in the blood. RESULTS: Here, we report that CARS1 can be secreted from cancer cells to activate immune responses via specific interactions with TLR2/6 of APCs. A unique domain (UNE-C1) inserted into the catalytic region of CARS1 was determined to activate dendritic cells, leading to the stimulation of robust humoral and cellular immune responses in vivo. UNE-C1 also showed synergistic efficacy with cancer antigens and checkpoint inhibitors against different cancer models in vivo. Further, the safety assessment of UNE-C1 showed lower systemic cytokine levels than other known TLR agonists. CONCLUSIONS: We identified the endogenous TLR2/6 activating domain from human cysteinyl-tRNA synthetase CARS1. This novel TLR2/6 ligand showed potent immune-stimulating activity with little toxicity. Thus, the UNE-C1 domain can be developed as an effective immunoadjuvant with checkpoint inhibitors or cancer antigens to boost antitumor immunity.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Vacunas contra el Cáncer/administración & dosificación , Inmunidad Celular/inmunología , Inmunoterapia/métodos , Neoplasias Experimentales/terapia , Receptor Toll-Like 2/inmunología , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/inmunología , Animales , Vacunas contra el Cáncer/inmunología , Dominio Catalítico , Células Dendríticas/inmunología , Femenino , Humanos , Inmunización , Ligandos , Ratones , Ratones Endogámicos C57BL , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Linfocitos T Citotóxicos/inmunología , Receptor Toll-Like 2/química , Receptor Toll-Like 2/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda