Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Food Sci Technol ; 58(2): 571-580, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33568850

RESUMEN

Protein-energy malnutrition is one of the leading causes of death for children under-five in developing countries and Kenya is no exception. These children rely on starchy weaning foods such as finger millet (Eleusine coracana), which have poor protein digestibility. Cowpea (Vigna unguiculata), a locally available nutritious legume, could be an excellent complement to lysine-deficient millet diets. The present study thus aimed at innovatively improving protein digestibility of a baby weaning food, by evaluating the effect of malting on improved finger millet genotypes (U15, P224, KNE741, KNE629 and Snapping green) to enable selection of the best varieties with superior nutritional credential post process. Blending of selected finger millet with precooked cowpea flour followed the WHO recommended level at 10.32%, 21.26%, and 32.75% with 0% as control. Extractable phenols, condensed tannins, phytic acid, protein content, and protein digestibility were determined using recommended methods. Extractable phenol, condensed tannin, and phytate notably decreased by 44%, 47%, and 29% respectively after malting. Additionally, compositing with precooked cowpea increased protein content and protein digestibility in flour by about 6-39%. Cooking resulted in a 10% increase in protein digestibility in the complementary porridge. Malting of finger millet and compositing it with precooked cowpea has the potential to address PEM as it results in reduced anti-nutritional content with a concomitant improvement in protein digestibility of the baby weaning food.

2.
Nat Genet ; 51(5): 857-864, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31036963

RESUMEN

We report a map of 4.97 million single-nucleotide polymorphisms of the chickpea from whole-genome resequencing of 429 lines sampled from 45 countries. We identified 122 candidate regions with 204 genes under selection during chickpea breeding. Our data suggest the Eastern Mediterranean as the primary center of origin and migration route of chickpea from the Mediterranean/Fertile Crescent to Central Asia, and probably in parallel from Central Asia to East Africa (Ethiopia) and South Asia (India). Genome-wide association studies identified 262 markers and several candidate genes for 13 traits. Our study establishes a foundation for large-scale characterization of germplasm and population genomics, and a resource for trait dissection, accelerating genetic gains in future chickpea breeding.


Asunto(s)
Cicer/genética , Cicer/clasificación , ADN de Plantas/genética , Domesticación , Marcadores Genéticos , Variación Genética , Genoma de Planta , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Desequilibrio de Ligamiento , Filogenia , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN
3.
Biotechnol Adv ; 31(8): 1120-34, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23313999

RESUMEN

Advances in next-generation sequencing and genotyping technologies have enabled generation of large-scale genomic resources such as molecular markers, transcript reads and BAC-end sequences (BESs) in chickpea, pigeonpea and groundnut, three major legume crops of the semi-arid tropics. Comprehensive transcriptome assemblies and genome sequences have either been developed or underway in these crops. Based on these resources, dense genetic maps, QTL maps as well as physical maps for these legume species have also been developed. As a result, these crops have graduated from 'orphan' or 'less-studied' crops to 'genomic resources rich' crops. This article summarizes the above-mentioned advances in genomics and genomics-assisted breeding applications in the form of marker-assisted selection (MAS) for hybrid purity assessment in pigeonpea; marker-assisted backcrossing (MABC) for introgressing QTL region for drought-tolerance related traits, Fusarium wilt (FW) resistance and Ascochyta blight (AB) resistance in chickpea; late leaf spot (LLS), leaf rust and nematode resistance in groundnut. We critically present the case of use of other modern breeding approaches like marker-assisted recurrent selection (MARS) and genomic selection (GS) to utilize the full potential of genomics-assisted breeding for developing superior cultivars with enhanced tolerance to various environmental stresses. In addition, this article recommends the use of advanced-backcross (AB-backcross) breeding and development of specialized populations such as multi-parents advanced generation intercross (MAGIC) for creating new variations that will help in developing superior lines with broadened genetic base. In summary, we propose the use of integrated genomics and breeding approach in these legume crops to enhance crop productivity in marginal environments ensuring food security in developing countries.


Asunto(s)
Cruzamiento , Fabaceae , Marcadores Genéticos , Genoma de Planta , Genómica , Transcriptoma , Mapeo Cromosómico , Productos Agrícolas , Clima Tropical
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda