Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Med Res Rev ; 43(3): 614-682, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36658724

RESUMEN

Ferroptosis is an iron-dependent cell death program that is characterized by excessive lipid peroxidation. Triggering ferroptosis has been proposed as a promising strategy to fight cancer and overcome drug resistance in antitumor therapy. Understanding the molecular interactions and structural features of ferroptosis-inducing compounds might therefore open the door to efficient pharmacological strategies against aggressive, metastatic, and therapy-resistant cancer. We here summarize the molecular mechanisms and structural requirements of ferroptosis-inducing small molecules that target central players in ferroptosis. Focus is placed on (i) glutathione peroxidase (GPX) 4, the only GPX isoenzyme that detoxifies complex membrane-bound lipid hydroperoxides, (ii) the cystine/glutamate antiporter system Xc - that is central for glutathione regeneration, (iii) the redox-protective transcription factor nuclear factor erythroid 2-related factor (NRF2), and (iv) GPX4 repression in combination with induced heme degradation via heme oxygenase-1. We deduce common features for efficient ferroptotic activity and highlight challenges in drug development. Moreover, we critically discuss the potential of natural products as ferroptosis-inducing lead structures and provide a comprehensive overview of structurally diverse biogenic and bioinspired small molecules that trigger ferroptosis via iron oxidation, inhibition of the thioredoxin/thioredoxin reductase system or less defined modes of action.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Oxidación-Reducción , Hierro/metabolismo
2.
Eur J Nutr ; 60(6): 3267-3278, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33590281

RESUMEN

PURPOSE: We aimed to examine the prospective association between manganese, iron, copper, zinc, iodine, selenium, selenoprotein P, free zinc, and their interplay, with incident type 2 diabetes (T2D), cardiovascular disease (CVD) and colorectal cancer (CRC). METHODS: Serum trace element (TE) concentrations were measured in a case-cohort study embedded within the EPIC-Potsdam cohort, consisting of a random sub-cohort (n = 2500) and incident cases of T2D (n = 705), CVD (n = 414), and CRC (n = 219). TE patterns were investigated using principal component analysis. Cox proportional hazard models were fitted to examine the association between TEs with T2D, CVD and CRC incidence. RESULTS: Higher manganese, zinc, iodine and selenium were associated with an increased risk of developing T2D (HR Q5 vs Q1: 1.56, 1.09-2.22; HR per SD, 95% CI 1.18, 1.05-1.33; 1.09, 1.01-1.17; 1.19, 1.06-1.34, respectively). Regarding CVD, manganese, copper and copper-to-zinc ratio were associated with an increased risk (HR per SD, 95% CI 1.13, 1.00-1.29; 1.22, 1.02-1.44; 1.18, 1.02-1.37, respectively). The opposite was observed for higher selenium-to-copper ratio (HR Q5 vs Q1, 95% CI 0.60, 0.39-0.93). Higher copper and zinc were associated with increasing risk of developing CRC (HR per SD, 95% CI 1.29, 1.05-1.59 and 1.14, 1.00-1.30, respectively). Selenium, selenoprotein P and selenium-to-copper-ratio were associated to decreased risk (HR per SD, 95% CI 0.82, 0.69-0.98; 0.81, 0.72-0.93; 0.77, 0.65-0.92, respectively). Two TE patterns were identified: manganese-iron-zinc and copper-iodine-selenium. CONCLUSION: Different TEs were associated with the risk of developing T2D, CVD and CRC. The contrasting associations found for selenium with T2D and CRC point towards differential disease-related pathways.


Asunto(s)
Enfermedades Cardiovasculares , Neoplasias Colorrectales , Diabetes Mellitus Tipo 2 , Selenio , Oligoelementos , Enfermedades Cardiovasculares/epidemiología , Estudios de Cohortes , Neoplasias Colorrectales/epidemiología , Cobre , Diabetes Mellitus Tipo 2/epidemiología , Humanos , Incidencia , Estudios Prospectivos
3.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34681720

RESUMEN

Physiological selenium (Se) levels counteract excessive inflammation, with selenoproteins shaping the immunoregulatory cytokine and lipid mediator profile. How exactly differentiation of monocytes into macrophages influences the expression of the selenoproteome in concert with the Se supply remains obscure. THP-1 monocytes were differentiated with phorbol 12-myristate 13-acetate (PMA) into macrophages and (i) the expression of selenoproteins, (ii) differentiation markers, (iii) the activity of NF-κB and NRF2, as well as (iv) lipid mediator profiles were analyzed. Se and differentiation affected the expression of selenoproteins in a heterogeneous manner. GPX4 expression was substantially decreased during differentiation, whereas GPX1 was not affected. Moreover, Se increased the expression of selenoproteins H and F, which was further enhanced by differentiation for selenoprotein F and diminished for selenoprotein H. Notably, LPS-induced expression of NF-κB target genes was facilitated by Se, as was the release of COX- and LOX-derived lipid mediators and substrates required for lipid mediator biosynthesis. This included TXB2, TXB3, 15-HETE, and 12-HEPE, as well as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Our results indicate that Se enables macrophages to accurately adjust redox-dependent signaling and thereby modulate downstream lipid mediator profiles.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Selenio/farmacología , Transducción de Señal/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología , Ácido Araquidónico/metabolismo , Línea Celular , Ácido Eicosapentaenoico/metabolismo , Humanos , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/metabolismo , FN-kappa B/metabolismo , Oxidación-Reducción , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Selenio/química , Selenoproteínas/metabolismo , Tromboxano B2/metabolismo
4.
Eur J Nutr ; 59(7): 3045-3058, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31786641

RESUMEN

PURPOSE: We aimed to evaluate age-dependent changes of six trace elements (TE) [manganese (Mn), iron (Fe), zinc (Zn), copper (Cu), iodine (I), and selenium (Se)] over a 20-year period. METHODS: TE concentrations were determined using repeated serum samples taken at baseline and after 20 years of follow-up from 219 healthy participants of the EPIC-Potsdam study, using inductively coupled plasma tandem mass spectrometry. For each TE, absolute and relative differences were calculated between the two time points, as well as the proportion of individuals within normal reference ranges. Interdependence between age-related TE differences was investigated using principal component analysis (PCA). Relationships between selected factors (lifestyle, sociodemographic, anthropometric factors, and hypertension) and corresponding TE longitudinal variability were examined using multivariable linear regression models. RESULTS: Median age of our study sample was 58.32 years (4.42) at baseline and 40% were females. Median Mn, Zn, Se concentrations and Se to Cu ratio significantly decreased during aging while median Fe, Cu, I concentrations and Cu to Zn ratio significantly increased. A substantial percentage of the participants, at both time points, had Zn concentrations below the reference range. The first PCA-extracted factor reflected the correlated decline in both Mn and Zn over time while the second factor reflected the observed (on average) increase in both Cu and I over time. Overall, none of the investigated factors were strong determinants of TE longitudinal variability, except possibly dietary supplement use, and alcohol use for Fe. CONCLUSIONS: In conclusion, in this population-based study of healthy elderly, decrease in Mn, Zn, and Se concentrations and increase in Fe, Cu, and I concentrations were observed over 20 years of follow-up. Further research is required to investigate dietary determinants and markers of TE status as well as the relationships between TE profiles and the risk of age-related diseases.


Asunto(s)
Selenio , Oligoelementos , Anciano , Envejecimiento , Estudios de Cohortes , Cobre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Zinc
5.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917005

RESUMEN

Investigation of processes that contribute to the maintenance of genomic stability is one crucial factor in the attempt to understand mechanisms that facilitate ageing. The DNA damage response (DDR) and DNA repair mechanisms are crucial to safeguard the integrity of DNA and to prevent accumulation of persistent DNA damage. Among them, base excision repair (BER) plays a decisive role. BER is the major repair pathway for small oxidative base modifications and apurinic/apyrimidinic (AP) sites. We established a highly sensitive non-radioactive assay to measure BER incision activity in murine liver samples. Incision activity can be assessed towards the three DNA lesions 8-oxo-2'-deoxyguanosine (8-oxodG), 5-hydroxy-2'-deoxyuracil (5-OHdU), and an AP site analogue. We applied the established assay to murine livers of adult and old mice of both sexes. Furthermore, poly(ADP-ribosyl)ation (PARylation) was assessed, which is an important determinant in DDR and BER. Additionally, DNA damage levels were measured to examine the overall damage levels. No impact of ageing on the investigated endpoints in liver tissue were found. However, animal sex seems to be a significant impact factor, as evident by sex-dependent alterations in all endpoints investigated. Moreover, our results revealed interrelationships between the investigated endpoints indicative for the synergetic mode of action of the cellular DNA integrity maintaining machinery.


Asunto(s)
Envejecimiento/metabolismo , Daño del ADN , Reparación del ADN , Oligonucleótidos/aislamiento & purificación , Poli ADP Ribosilación , Animales , Electroforesis en Gel de Gradiente Desnaturalizante , Femenino , Células Hep G2 , Humanos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Caracteres Sexuales
6.
Proteomics ; 17(11)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28409884

RESUMEN

The essential trace element selenium (Se) is controversially discussed concerning its role in health and disease. Its various physiological functions are largely mediated by Se incorporation in the catalytic center of selenoproteins. In order to gain insights into the impact of Se deficiency and of supplementation with different Se compounds (selenite, selenate, selenomethionine) at defined concentrations (recommended, 150 µg/kg diet; excessive, 750 µg/kg diet) in murine colon tissues, a 20-week feeding experiment was performed followed by analysis of the protein expression pattern of colon tissue specimens by 2D-DIGE and MALDI-TOF MS. Using this approach, 24 protein spots were identified to be significantly regulated by the different Se compounds. These included the antioxidant enzyme peroxiredoxin-5 (PRDX5), proteins with binding capabilities, such as cofilin-1 (COF1), calmodulin, and annexin A2 (ANXA2), and proteins involved in catalytic processes, such as 6-phosphogluconate dehydrogenase (6PGD). Furthermore, the Se compounds demonstrated a differential impact on the expression of the identified proteins. Selected target structures were validated by qPCR and Western blot which mainly confirmed the proteomic profiling data. Thus, novel Se-regulated proteins in colon tissues have been identified, which expand our understanding of the physiologic role of Se in colon tissue.


Asunto(s)
Colon/metabolismo , Suplementos Dietéticos , Proteoma/análisis , Compuestos de Selenio/administración & dosificación , Selenoproteínas/metabolismo , Animales , Anexina A2/metabolismo , Calmodulina/metabolismo , Cofilina 1/metabolismo , Colon/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Electroforesis Bidimensional Diferencial en Gel
7.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3323-3334, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27565357

RESUMEN

BACKGROUND: Selenium (Se) exerts its biological activity largely via selenoproteins, which are key enzymes for maintaining the cellular redox homeostasis. However, besides these beneficial effects there is also evidence that an oversupply of Se might increase the risk towards developing metabolic disorders. To address this in more detail, we directly compared effects of feeding distinct Se compounds and concentrations on hepatic metabolism and expression profiles of mice. METHODS: Male C57BL6/J mice received either a selenium-deficient diet or diets enriched with adequate or high doses of selenite, selenate or selenomethionine for 20weeks. Subsequently, metabolic parameters, enzymatic activities and expression levels of hepatic selenoproteins, Nrf2 targets, and additional redox-sensitive proteins were analyzed. Furthermore, 2D-DIGE-based proteomic profiling revealed Se compound-specific differentially expressed proteins. RESULTS: Whereas heterogeneous effects between high concentrations of the Se compounds were observed with regard to body weight and metabolic activities, selenoproteins were only marginally increased by high Se concentrations in comparison to the respective adequate feeding. In particular the high-SeMet group showed a unique response compromising higher hepatic Se levels in comparison to all other groups. Accordingly, hepatic glutathione (GSH) levels, glutathione S-transferase (GST) activity, and GSTpi1 expression were comparably high in the high-SeMet and Se-deficient group, indicating that compound-specific effects of high doses appear to be independent of selenoproteins. CONCLUSIONS: Not only the nature, but also the concentration of Se compounds differentially affect biological processes. GENERAL SIGNIFICANCE: Thus, it is important to consider Se compound-specific effects when supplementing with selenium.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Hígado/metabolismo , Proteoma/metabolismo , Compuestos de Selenio/farmacología , Animales , Antioxidantes/metabolismo , Suplementos Dietéticos , Conducta Alimentaria/efectos de los fármacos , Glutatión/sangre , Glutatión/metabolismo , Homeostasis/efectos de los fármacos , Homeostasis/genética , Hígado/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Selenio/metabolismo , Selenometionina/farmacología , Regulación hacia Arriba/efectos de los fármacos , Aumento de Peso/efectos de los fármacos
8.
Am J Physiol Endocrinol Metab ; 310(11): E938-46, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27094035

RESUMEN

Overweight and obesity are associated with hyperinsulinemia, insulin resistance, and a low-grade inflammation. Although hyperinsulinemia is generally thought to result from an attempt of the ß-cell to compensate for insulin resistance, there is evidence that hyperinsulinaemia itself may contribute to the development of insulin resistance and possibly the low-grade inflammation. To test this hypothesis, U937 macrophages were exposed to insulin. In these cells, insulin induced expression of the proinflammatory cytokines IL-1ß, IL-8, CCL2, and OSM. The insulin-elicited induction of IL-1ß was independent of the presence of endotoxin and most likely mediated by an insulin-dependent activation of NF-κB. Supernatants of the insulin-treated U937 macrophages rendered primary cultures of rat hepatocytes insulin resistant; they attenuated the insulin-dependent induction of glucokinase by 50%. The cytokines contained in the supernatants of insulin-treated U937 macrophages activated ERK1/2 and IKKß, resulting in an inhibitory serine phosphorylation of the insulin receptor substrate. In addition, STAT3 was activated and SOCS3 induced, further contributing to the interruption of the insulin receptor signal chain in hepatocytes. These results indicate that hyperinsulinemia per se might contribute to the low-grade inflammation prevailing in overweight and obese patients and thereby promote the development of insulin resistance particularly in the liver, because the insulin concentration in the portal circulation is much higher than in all other tissues.


Asunto(s)
Comunicación Celular/inmunología , Citocinas/inmunología , Hepatocitos/inmunología , Resistencia a la Insulina/inmunología , Insulina/inmunología , Macrófagos/inmunología , Animales , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Insulina/administración & dosificación , Activación de Macrófagos/inmunología , Masculino , Ratas , Ratas Wistar
9.
FASEB J ; 29(4): 1314-28, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25491309

RESUMEN

Recent studies on mouse and human skeletal muscle (SM) demonstrated the important link between mitochondrial function and the cellular metabolic adaptation. To identify key compensatory molecular mechanisms in response to chronic mitochondrial distress, we analyzed mice with ectopic SM respiratory uncoupling in uncoupling protein 1 transgenic (UCP1-TG) mice as model of muscle-specific compromised mitochondrial function. Here we describe a detailed metabolic reprogramming profile associated with mitochondrial perturbations in SM, triggering an increased protein turnover and amino acid metabolism with induced biosynthetic serine/1-carbon/glycine pathway and the longevity-promoting polyamine spermidine as well as the trans-sulfuration pathway. This is related to an induction of NADPH-generating pathways and glutathione metabolism as an adaptive mitohormetic response and defense against increased oxidative stress. Strikingly, consistent muscle retrograde signaling profiles were observed in acute stress states such as muscle cell starvation and lipid overload, muscle regeneration, and heart muscle inflammation, but not in response to exercise. We provide conclusive evidence for a key compensatory stress-signaling network that preserves cellular function, oxidative stress tolerance, and survival during conditions of increased SM mitochondrial distress, a metabolic reprogramming profile so far only demonstrated for cancer cells and heart muscle.


Asunto(s)
Glicina/metabolismo , Mitocondrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Serina/metabolismo , Animales , Supervivencia Celular/fisiología , Hormesis , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Redes y Vías Metabólicas , Ratones , Ratones Transgénicos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fibras Musculares de Contracción Rápida/metabolismo , Proteínas Musculares/metabolismo , Estrés Oxidativo , Transducción de Señal , Transcriptoma , Proteína Desacopladora 1
10.
Biochim Biophys Acta ; 1840(6): 1747-54, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24380877

RESUMEN

BACKGROUND: PEPT1 is a rheogenic transport protein in the apical membrane of intestinal epithelial cells capable of transporting essentially all possible di- and tripeptides that are generated from the luminal protein breakdown. In addition, several anticancer, antimicrobial and antiviral drugs are taken up from the intestinal lumen via PEPT1 and therefore PEPT1 is a target for efficient drug delivery via prodrug approaches. Thus, understanding PEPT1 gene regulation is not only of importance for dietary adaptation but also for drug treatment. METHODS: In silico analysis of the Pept1 promoter was performed using MatInspector. Pept1 promoter constructs were generated and cotransfected with an Nrf2 expression plasmid. Caco-2 cells were stimulated with Nrf2 inducers followed by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP). Biological relevance was investigated using western blot analysis and transport activity assays. RESULTS: Reporter gene assays showed transcriptional activation of the Pept1 promoter in response to Nrf2 overexpression. EMSA as well as ChIP analysis validated Nrf2 binding to the ARE located closest to the start codon (Pept1-ARE1). Induction of the Nrf2 pathway resulted in increased endogenous PEPT1 protein abundance as well as transport activity. Moreover, we demonstrate that also the induction of autophagy by MG132 resulted in elevated Nrf2 binding to Pept1-ARE1 and increased PEPT1 protein expression. CONCLUSION: In summary, we identified a biologically active Nrf2 binding site within the Pept1 promoter which links Pept1 to the cellular defense program activated by Nrf2. GENERAL SIGNIFICANCE: This study identifies Pept1 as an inducible target gene of the Nrf2 pathway.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Factor 2 Relacionado con NF-E2/fisiología , Simportadores/genética , Autofagia , Sitios de Unión , Células CACO-2 , Ensayo de Cambio de Movilidad Electroforética , Humanos , Transportador de Péptidos 1 , Regiones Promotoras Genéticas
11.
J Trace Elem Med Biol ; 84: 127441, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38579499

RESUMEN

BACKGROUND: The essential trace element copper is relevant for many important physiological processes. Changes in copper homeostasis can result from disease and affect human health. A reliable assessment of copper status by suitable biomarkers may enable fast detection of subtle changes in copper metabolism. To this end, additional biomarkers besides serum copper and ceruloplasmin (CP) concentrations are required. OBJECTIVES: The aim of this study was to investigate the emerging copper biomarkers CP oxidase (CPO) activity, exchangeable copper (CuEXC) and labile copper in serum of healthy women and compare them with the conventional biomarkers total serum copper and CP. METHOD AND MAIN FINDINGS: This observational study determined CPO activity, the non CP-bound copper species CuEXC and labile copper, total serum copper and CP in sera of 110 healthy women. Samples were collected at four time points over a period of 24 weeks. The concentrations of total serum copper and CP were within the reference ranges. The comparison of all five biomarkers provided insight into their relationship, the intra- and inter-individual variability as well as the age dependence. The correlation and Principal Component Analyses (PCA) indicated that CP, CPO activity and total copper correlated well, followed by CuEXC, while the labile copper pool was unrelated to the other parameters. CONCLUSIONS: This study suggests that the non-CP-bound copper species represent copper pools that are differently regulated from total copper or CP-bound copper, making them interesting complementary biomarkers to enable a more complete assessment of body copper status with potential relevance for clinical application.


Asunto(s)
Biomarcadores , Cobre , Humanos , Cobre/sangre , Femenino , Biomarcadores/sangre , Adulto , Persona de Mediana Edad , Ceruloplasmina/metabolismo , Ceruloplasmina/análisis , Adulto Joven , Voluntarios Sanos , Anciano
12.
J Trace Elem Med Biol ; 84: 127462, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38701651

RESUMEN

Aging is associated with a decline in physiological functions and an increased risk of age-related diseases, emphasizing the importance of identifying dietary strategies for healthy aging. Minerals play a crucial role in maintaining optimal health during aging, making them relevant targets for investigation. Therefore, we aimed to analyze the effect of different dietary pattern on mineral status in the elderly. We included 502 individuals aged 50-80 years in a 36-month randomized controlled trial (RCT) (NutriAct study). This article focuses on the results within the two-year intervention period. NutriAct is not a mineral-modulating-targeted intervention study, rather examining nutrition in the context of healthy aging in general. However, mineral status might be affected in an incidental manner. Participants were assigned to either NutriAct dietary pattern (proportionate intake of total energy consumption (%E) of 35-45 %E carbohydrates, 35-40 %E fats, and 15-25 %E protein) or the German Nutrition Society (DGE) dietary pattern (proportionate intake of total energy consumption (%E) of 55 %E carbohydrates, 30 %E fats, and 15 %E protein), differing in the composition of macronutrients. Data from 368 participants regarding dietary intake (energy, calcium, magnesium, iron, and zinc) and serum mineral concentrations of calcium, magnesium, iron, copper, zinc, selenium, iodine, and manganese, free zinc, and selenoprotein P were analyzed at baseline, as well as after 12 and 24 months to gain comprehensive insight into the characteristics of the mineral status. Additionally, inflammatory status - sensitive to changes in mineral status - was assessed by measurement of C-reactive protein and interleukin-6. At baseline, inadequate dietary mineral intake and low serum concentrations of zinc and selenium were observed in both dietary patterns. Throughout two years, serum zinc concentrations decreased, while an increase of serum selenium, manganese and magnesium concentrations was observable, likely influenced by both dietary interventions. No significant changes were observed for serum calcium, iron, copper, or iodine concentrations. In conclusion, long-term dietary interventions can influence serum mineral concentrations in a middle-aged population. Our findings provide valuable insights into the associations between dietary habits, mineral status, and disease, contributing to dietary strategies for healthy aging.


Asunto(s)
Envejecimiento Saludable , Minerales , Humanos , Persona de Mediana Edad , Anciano , Masculino , Femenino , Alemania , Envejecimiento Saludable/sangre , Anciano de 80 o más Años , Minerales/sangre , Estado Nutricional , Dieta , Patrones Dietéticos
13.
Biochim Biophys Acta ; 1820(10): 1588-96, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22683372

RESUMEN

BACKGROUND: The glutathione peroxidase 2 (GPx2) is expressed at crypt bases of the intestinal epithelium and in tumour tissue. The GPx2 promoter is activated by the Wnt pathway, which might be the reason for the specific expression pattern of GPx2. Together with additional selenoproteins, thioredoxin reductases TrxR2 and TrxR3, which are putative Wnt targets based on microarray analysis, Wnt-dependent GPx2 expression was analysed. METHODS: Two cell culture models for either an activated (3T3 cells with Wnt3a overexpression) or an inhibited Wnt pathway (HT-29 APC cells) were analysed. To provide physiological relevance, crypt base epithelial cells of the jejunum and colon of mice were compared to cells of the villus or crypt table, respectively. In addition, ß-catenin was deleted in crypt base cells ex vivo. RESULTS: In cancer cell lines, the endogenous expression of all three selenoproteins was consistently dependent on Wnt pathway activity. Expression was higher in the proliferative crypt compartment, where also the Wnt pathway is active. An inducible knockout of ß-catenin in isolated colonic crypt base cells reduced basal GPx2 expression. We, thus, demonstrated the regulation of GPx2 expression by the Wnt pathway in vitro and in vivo. Furthermore, the selenoproteins TrxR2 and TrxR3 have been identified as novel Wnt targets. This may imply a role of GPx2, TrxR2 and TrxR3 in proliferation, apoptosis and, therefore, also during cancer development. GENERAL SIGNIFICANCE: Selenium which is essential for the biosynthesis of Wnt-dependent selenoproteins might be important for the renewal of the intestinal epithelium and during carcinogenesis.


Asunto(s)
Glutatión Peroxidasa/genética , Mucosa Intestinal/metabolismo , Tiorredoxina Reductasa 2/genética , Reductasa de Tiorredoxina-Disulfuro/genética , Vía de Señalización Wnt/fisiología , Animales , Apoptosis/genética , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Regulación de la Expresión Génica , Glutatión Peroxidasa/metabolismo , Células HT29 , Células Hep G2 , Humanos , Mucosa Intestinal/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células 3T3 NIH , Selenoproteínas/genética , Selenoproteínas/metabolismo , Tiorredoxina Reductasa 2/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Vía de Señalización Wnt/genética , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo , Proteína Wnt3A/fisiología
14.
Nutrients ; 15(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37630729

RESUMEN

Plant-based diets usually contain more nutrient-dense foods such as vegetables, legumes, whole grains, and fruits than a standard Western diet. Yet, the amount and especially the bioavailability of several nutrients, such as trace elements, is supposed to be lower in comparison to diets with consumption of animal-derived foods. Based on this, the Nutritional Evaluation (NuEva) study (172 participants) was initiated to compare the trace element status of omnivores, flexitarians, vegetarians, and vegans. Serum selenium, zinc, and copper concentrations and biomarkers were evaluated at baseline and during a 12-month intervention with energy- and nutrient-optimized menu plans. The implementation of optimized menu plans did not substantially influence the status of trace elements. At baseline, serum selenium biomarkers were lower in vegetarians and vegans compared to omnivores and flexitarians. The zinc intake of vegetarians and vegans was significantly lower compared to omnivores, whereas the Phytate Diet Score was increased. Accordingly, total serum zinc concentrations were reduced in vegans which was, however, only significant in women and was further supported by the analysis of free zinc. Regarding copper status, no differences were observed for total serum copper. Overall, we identified selenium and zinc as critical nutrients especially when maintaining a vegan diet.


Asunto(s)
Selenio , Oligoelementos , Animales , Humanos , Veganos , Dieta Vegana , Cobre , Zinc , Vegetarianos , Verduras
15.
Redox Biol ; 59: 102593, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36608588

RESUMEN

Five out of eight human glutathione peroxidases (GPXs) are selenoproteins, representing proteins that contain selenium as part of the amino acid selenocysteine. The GPXs are important for reducing hydroperoxides in a glutathione-consuming manner and thus regulate cellular redox homeostasis. GPX1, GPX2, and GPX4 represent the three main cytosolic GPXs, but they differ in their expression patterns with GPX1 and GPX4 being expressed ubiquitously, whereas GPX2 is mainly expressed in epithelial cells. GPX1 and GPX2 have been described to reduce soluble hydroperoxides, while GPX4 reduces complex lipid hydroperoxides, thus protecting cells from lipid peroxidation and ferroptosis. But most of these data are derived from cells that are devoid of one of the isoforms and thus, compensation or other cellular effects might affect the conclusions. So far, the use of isolated recombinant human selenoprotein glutathione peroxidases in pure enzyme assays has not been employed to study their substrate specificities side by side. Using recombinant GPX1, GPX2, and GPX4 produced in E. coli we here assessed their GPX activities by a NADPH-consuming glutathione reductase-coupled assay with 17 different peroxides (all at 50 µM) as substrates. GPX4 was clearly the only isoform able to reduce phosphatidylcholine hydroperoxide. In contrast, small soluble hydroperoxides such as H2O2, cumene hydroperoxide, and tert-butyl hydroperoxide were reduced by all three isoforms, but with approximately 10-fold higher efficiency for GPX1 in comparison to GPX2 and GPX4. Also, several fatty acid-derived hydroperoxides were reduced by all three isoforms and again GPX1 had the highest activity. Interestingly, the stereoisomerism of the fatty acid-derived hydroperoxides clearly affected the activity of the GPX enzymes. Overall, distinct substrate specificity is obvious for GPX4, but not so when comparing GPX1 and GPX2. Clearly GPX1 was the most potent isoform of the three GPXs in terms of turnover in reduction of soluble and fatty-acid derived hydroperoxides.


Asunto(s)
Escherichia coli , Peróxido de Hidrógeno , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Grasos , Glutatión , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Especificidad por Sustrato
16.
Artículo en Inglés | MEDLINE | ID: mdl-37209457

RESUMEN

Alterations in reduced and oxidized glutathione (GSH/GSSG) levels represent an important marker for oxidative stress and potential disease progression in toxicological research. Since GSH can be oxidized rapidly, using a stable and reliable method for sample preparation and GSH/GSSG quantification is essential to obtain reproducible data. Here we describe an optimised sample processing combined with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, validated for different biological matrices (lysates from HepG2 cells, C. elegans, and mouse liver tissue). To avoid autoxidation of GSH, samples were treated with the thiol-masking agent N-ethylmaleimide (NEM) and sulfosalicylic acid (SSA) in a single step. With an analysis time of 5 min, the developed LC-MS/MS method offers simultaneous determination of GSH and GSSG at high sample throughput with high sensitivity. This is especially interesting with respect of screening for oxidative and protective properties of substances in in vitro and in vivo models, e.g. C. elegans. In addition to method validation parameters (linearity, limit of detection (LOD), limit of quantification (LOQ), recovery, interday, intraday), we verified the method by using menadione and L-buthionine-(S,R)-sulfoximine (BSO) as well established modulators of cellular GSH and GSSG concentrations. Thereby menadione proved to be a reliable positive control also in C. elegans.


Asunto(s)
Glutatión , Espectrometría de Masas en Tándem , Ratones , Animales , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Vitamina K 3/análisis , Caenorhabditis elegans/metabolismo , Oxidación-Reducción
17.
Front Endocrinol (Lausanne) ; 14: 1277866, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37941910

RESUMEN

Mitochondria play multifaceted roles in cellular function, and impairments across domains of mitochondrial biology are known to promote cellular integrated stress response (ISR) pathways as well as systemic metabolic adaptations. However, the temporal dynamics of specific mitochondrial ISR related to physiological variations in tissue-specific energy demands remains unknown. Here, we conducted a comprehensive 24-hour muscle and plasma profiling of male and female mice with ectopic mitochondrial respiratory uncoupling in skeletal muscle (mUcp1-transgenic, TG). TG mice are characterized by increased muscle ISR, elevated oxidative stress defense, and increased secretion of FGF21 and GDF15 as ISR-induced myokines. We observed a temporal signature of both cell-autonomous and systemic ISR in the context of endocrine myokine signaling and cellular redox balance, but not of ferroptotic signature which was also increased in TG muscle. We show a progressive increase of muscle ISR on transcriptional level during the active phase (night time), with a subsequent peak in circulating FGF21 and GDF15 in the early resting phase. Moreover, we found highest levels of muscle oxidative defense (GPX and NQO1 activity) between the late active to early resting phase, which could aim to counteract excessive iron-dependent lipid peroxidation and ferroptosis in muscle of TG mice. These findings highlight the temporal dynamics of cell-autonomous and endocrine ISR signaling under skeletal muscle mitochondrial uncoupling, emphasizing the importance of considering such dissociation in translational strategies and sample collection for diagnostic biomarker analysis.


Asunto(s)
Ferroptosis , Ratones , Masculino , Femenino , Animales , Ratones Transgénicos , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Oxidación-Reducción
18.
Nat Commun ; 14(1): 3479, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311819

RESUMEN

Selenium homeostasis depends on hepatic biosynthesis of selenoprotein P (SELENOP) and SELENOP-mediated transport from the liver to e.g. the brain. In addition, the liver maintains copper homeostasis. Selenium and copper metabolism are inversely regulated, as increasing copper and decreasing selenium levels are observed in blood during aging and inflammation. Here we show that copper treatment increased intracellular selenium and SELENOP in hepatocytes and decreased extracellular SELENOP levels. Hepatic accumulation of copper is a characteristic of Wilson's disease. Accordingly, SELENOP levels were low in serum of Wilson's disease patients and Wilson's rats. Mechanistically, drugs targeting protein transport in the Golgi complex mimicked some of the effects observed, indicating a disrupting effect of excessive copper on intracellular SELENOP transport resulting in its accumulation in the late Golgi. Our data suggest that hepatic copper levels determine SELENOP release from the liver and may affect selenium transport to peripheral organs such as the brain.


Asunto(s)
Degeneración Hepatolenticular , Selenio , Animales , Ratas , Selenoproteína P , Cobre
19.
Carcinogenesis ; 33(3): 620-8, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22180572

RESUMEN

Chronic inflammation and selenium deficiency are considered as risk factors for colon cancer. The protective effect of selenium might be mediated by specific selenoproteins, such as glutathione peroxidases (GPx). GPx-1 and -2 double knockout, but not single knockout mice, spontaneously develop ileocolitis and intestinal cancer. Since GPx2 is induced by the chemopreventive sulforaphane (SFN) via the nuclear factor E2-related factor 2 (Nrf2)/Keap1 system, the susceptibility of GPx2-KO and wild-type (WT) mice to azoxymethane and dextran sulfate sodium (AOM/DSS)-induced colon carcinogenesis was tested under different selenium states and SFN applications. WT and GPx2-KO mice were grown on a selenium-poor, -adequate or -supranutritional diet. SFN application started either 1 week before (SFN4) or along with (SFN3) a single AOM application followed by DSS treatment for 1 week. Mice were assessed 3 weeks after AOM for colitis and Nrf2 target gene expression and after 12 weeks for tumorigenesis. NAD(P)H:quinone oxidoreductases, thioredoxin reductases and glutathione-S-transferases were upregulated in the ileum and/or colon by SFN, as was GPx2 in WT mice. Inflammation scores were more severe in GPx2-KO mice and highest in selenium-poor groups. Inflammation was enhanced by SFN4 in both genotypes under selenium restriction but decreased in selenium adequacy. Total tumor numbers were higher in GPx2-KO mice but diminished by increasing selenium in both genotypes. SFN3 reduced inflammation and tumor multiplicity in both Se-adequate genotypes. Tumor size was smaller in Se-poor GPx2-KO mice. It is concluded that GPx2, although supporting tumor growth, inhibits inflammation-mediated tumorigenesis, but the protective effect of selenium does not strictly depend on GPx2 expression. Similarly, SFN requires selenium but not GPx2 for being protective.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Glutatión Peroxidasa/metabolismo , Inflamación/tratamiento farmacológico , Selenio/farmacología , Tiocianatos/farmacología , Animales , Apoptosis/efectos de los fármacos , Azoximetano/farmacología , Transformación Celular Neoplásica , Colitis/inducido químicamente , Colitis/genética , Colon/metabolismo , Neoplasias del Colon/inducido químicamente , Sulfato de Dextran/farmacología , Glutatión Peroxidasa/biosíntesis , Glutatión Peroxidasa/genética , Glutatión Transferasa/biosíntesis , Íleon/metabolismo , Isotiocianatos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NAD(P)H Deshidrogenasa (Quinona)/biosíntesis , Factor 2 Relacionado con NF-E2/biosíntesis , Selenio/deficiencia , Selenio/metabolismo , Sulfóxidos , Reductasa de Tiorredoxina-Disulfuro/biosíntesis
20.
J Patient Rep Outcomes ; 6(1): 126, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36525162

RESUMEN

BACKGROUND: Treatment options for metastatic renal cell carcinoma (mRCC) have improved over recent years. Various therapies for metastatic renal cell carcinoma are currently approved for first and successive lines. Having various treatment options makes it important to reflect how patients experience side effects in the real-world setting. So far, data on the side effects of these treatments have only been collected within clinical trials, and have been mostly assessed by the investigator and not as patient-reported outcomes. Our aim was to determine patient-reported experiences of side effects in the real-world setting and to evaluate the doctor-patient communication regarding side effects. Data were collected via an anonymous, voluntary online survey given to members of a support group for RCC; the questionnaire was completed by 104 mRCC patients. RESULTS: 89.1% of participants were suffering from side effects of any grade. These appeared to be higher for patients treated with tyrosine kinase inhibitors compared to those treated with immune-checkpoint inhibitors (98.4% vs. 68.4%). However, information on side effects is scarce: 4.0% had never heard anything about them while only 18.8% of participants received detailed information on possible side effects. Although 85.6% of participants reported side effects to their physician, 34.6% did not encounter an improvement. Limitations of the study include the design as an online questionnaire and the small sample, consisting only of members of a support group. CONCLUSIONS: Differences can be seen between patient-reported side effects within our survey and those based on clinical trials. A shift towards more patient-reported outcomes is needed. In addition, patients seeking the advice of their physician on side effects are in need of more-or better-information and support.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda