Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 166(4): 841-854, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27453471

RESUMEN

For placental mammals, the transition from the in utero maternal environment to postnatal life requires the activation of thermogenesis to maintain their core temperature. This is primarily accomplished by induction of uncoupling protein 1 (UCP1) in brown and beige adipocytes, the principal sites for uncoupled respiration. Despite its importance, how placental mammals license their thermogenic adipocytes to participate in postnatal uncoupled respiration is not known. Here, we provide evidence that the "alarmin" IL-33, a nuclear cytokine that activates type 2 immune responses, licenses brown and beige adipocytes for uncoupled respiration. We find that, in absence of IL-33 or ST2, beige and brown adipocytes develop normally but fail to express an appropriately spliced form of Ucp1 mRNA, resulting in absence of UCP1 protein and impairment in uncoupled respiration and thermoregulation. Together, these data suggest that IL-33 and ST2 function as a developmental switch to license thermogenesis during the perinatal period. PAPERCLIP.


Asunto(s)
Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Parto , Termogénesis , Adipocitos/metabolismo , Animales , Animales Recién Nacidos , Respiración de la Célula , Frío , Femenino , Interleucina-33/genética , Linfocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
2.
Nature ; 606(7912): 180-187, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35614225

RESUMEN

Mitochondria generate heat due to H+ leak (IH) across their inner membrane1. IH results from the action of long-chain fatty acids on uncoupling protein 1 (UCP1) in brown fat2-6 and ADP/ATP carrier (AAC) in other tissues1,7-9, but the underlying mechanism is poorly understood. As evidence of pharmacological activators of IH through UCP1 and AAC is lacking, IH is induced by protonophores such as 2,4-dinitrophenol (DNP) and cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP)10,11. Although protonophores show potential in combating obesity, diabetes and fatty liver in animal models12-14, their clinical potential for treating human disease is limited due to indiscriminately increasing H+ conductance across all biological membranes10,11 and adverse side effects15. Here we report the direct measurement of IH induced by DNP, FCCP and other common protonophores and find that it is dependent on AAC and UCP1. Using molecular structures of AAC, we perform a computational analysis to determine the binding sites for protonophores and long-chain fatty acids, and find that they overlap with the putative ADP/ATP-binding site. We also develop a mathematical model that proposes a mechanism of uncoupler-dependent IH through AAC. Thus, common protonophoric uncouplers are synthetic activators of IH through AAC and UCP1, paving the way for the development of new and more specific activators of these two central mediators of mitochondrial bioenergetics.


Asunto(s)
Mitocondrias , Translocasas Mitocondriales de ADP y ATP , Protones , Proteína Desacopladora 1 , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Tejido Adiposo Pardo/metabolismo , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/metabolismo , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Ácidos Grasos/metabolismo , Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Proteína Desacopladora 1/metabolismo
3.
Cell ; 151(2): 400-13, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23063128

RESUMEN

Mitochondrial uncoupling protein 1 (UCP1) is responsible for nonshivering thermogenesis in brown adipose tissue (BAT). Upon activation by long-chain fatty acids (LCFAs), UCP1 increases the conductance of the inner mitochondrial membrane (IMM) to make BAT mitochondria generate heat rather than ATP. Despite being a member of the family of mitochondrial anion carriers (SLC25), UCP1 is believed to transport H(+) by an unusual mechanism that has long remained unresolved. Here, we achieved direct patch-clamp measurements of UCP1 currents from the IMM of BAT mitochondria. We show that UCP1 is an LCFA anion/H(+) symporter. However, the LCFA anions cannot dissociate from UCP1 due to hydrophobic interactions established by their hydrophobic tails, and UCP1 effectively operates as an H(+) carrier activated by LCFA. A similar LCFA-dependent mechanism of transmembrane H(+) transport may be employed by other SLC25 members and be responsible for mitochondrial uncoupling and regulation of metabolic efficiency in various tissues.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Ácidos Grasos/metabolismo , Canales Iónicos/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Sitios de Unión , Citoplasma/metabolismo , Canales Iónicos/antagonistas & inhibidores , Ratones , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Técnicas de Placa-Clamp , Protones , Purinas/metabolismo , Proteína Desacopladora 1
5.
Annu Rev Physiol ; 84: 381-407, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34758268

RESUMEN

Mitochondria of all tissues convert various metabolic substrates into two forms of energy: ATP and heat. Historically, the primary focus of research in mitochondrial bioenergetics was on the mechanisms of ATP production, while mitochondrial thermogenesis received significantly less attention. Nevertheless, mitochondrial heat production is crucial for the maintenance of body temperature, regulation of the pace of metabolism, and prevention of oxidative damage to mitochondria and the cell. In addition, mitochondrial thermogenesis has gained significance as a pharmacological target for treating metabolic disorders. Mitochondria produce heat as the result of H+ leak across their inner membrane. This review provides a critical assessment of the current field of mitochondrial H+ leak and thermogenesis, with a focus on the molecular mechanisms involved in the function and regulation of uncoupling protein 1 and the ADP/ATP carrier, the two proteins that mediate mitochondrial H+ leak.


Asunto(s)
Mitocondrias , Termogénesis , Metabolismo Energético/fisiología , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Termogénesis/fisiología , Proteína Desacopladora 1/metabolismo
6.
Cell ; 140(3): 327-37, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-20144758

RESUMEN

Human spermatozoa are quiescent in the male reproductive system and must undergo activation once introduced into the female reproductive tract. This process is known to require alkalinization of sperm cytoplasm, but the mechanism responsible for transmembrane proton extrusion has remained unknown because of the inability to measure membrane conductance in human sperm. Here, by successfully patch clamping human spermatozoa, we show that proton channel Hv1 is their dominant proton conductance. Hv1 is confined to the principal piece of the sperm flagellum, where it is expressed at unusually high density. Robust flagellar Hv1-dependent proton conductance is activated by membrane depolarization, an alkaline extracellular environment, endocannabinoid anandamide, and removal of extracellular zinc, a potent Hv1 blocker. Hv1 allows only outward transport of protons and is therefore dedicated to inducing intracellular alkalinization and activating spermatozoa. The importance of Hv1 for sperm activation makes it an attractive target for controlling male fertility.


Asunto(s)
Canales Iónicos/metabolismo , Capacitación Espermática , Reacción Acrosómica , Animales , Femenino , Humanos , Concentración de Iones de Hidrógeno , Canales Iónicos/antagonistas & inhibidores , Masculino , Ratones , Motilidad Espermática , Cola del Espermatozoide/metabolismo , Espermatozoides/citología , Espermatozoides/metabolismo
7.
Nature ; 571(7766): 515-520, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31341297

RESUMEN

The mitochondrial ADP/ATP carrier (AAC) is a major transport protein of the inner mitochondrial membrane. It exchanges mitochondrial ATP for cytosolic ADP and controls cellular production of ATP. In addition, it has been proposed that AAC mediates mitochondrial uncoupling, but it has proven difficult to demonstrate this function or to elucidate its mechanisms. Here we record AAC currents directly from inner mitochondrial membranes from various mouse tissues and identify two distinct transport modes: ADP/ATP exchange and H+ transport. The AAC-mediated H+ current requires free fatty acids and resembles the H+ leak via the thermogenic uncoupling protein 1 found in brown fat. The ADP/ATP exchange via AAC negatively regulates the H+ leak, but does not completely inhibit it. This suggests that the H+ leak and mitochondrial uncoupling could be dynamically controlled by cellular ATP demand and the rate of ADP/ATP exchange. By mediating two distinct transport modes, ADP/ATP exchange and H+ leak, AAC connects coupled (ATP production) and uncoupled (thermogenesis) energy conversion in mitochondria.


Asunto(s)
Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Protones , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Coenzimas/metabolismo , Ácidos Grasos/metabolismo , Transporte Iónico , Masculino , Ratones , Consumo de Oxígeno
8.
Biol Reprod ; 109(2): 192-203, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37294625

RESUMEN

In human spermatozoa, the electrochemical potentials across the mitochondrial and plasma membranes are related to sperm functionality and fertility, but the exact role of each potential has yet to be clarified. Impairing sperm mitochondrial function has been considered as an approach to creating male or unisex contraceptives, but it has yet to be shown whether this approach would ultimately block the ability of sperm to reach or fertilize an egg. To investigate whether the mitochondrial and plasma membrane potentials are necessary for sperm fertility, human sperm were treated with two small-molecule mitochondrial uncouplers (niclosamide ethanolamine and BAM15) that depolarize membranes by inducing passive proton flow, and evaluated the effects on a variety of sperm physiological processes. BAM15 specifically uncoupled human sperm mitochondria while niclosamide ethanolamine induced proton current in the plasma membrane in addition to depolarizing the mitochondria. In addition, both compounds significantly decreased sperm progressive motility with niclosamide ethanolamine having a more robust effect. However, these uncouplers did not reduce sperm adenosine triphosphate (ATP) content or impair other physiological processes, suggesting that human sperm can rely on glycolysis for ATP production if mitochondria are impaired. Thus, systemically delivered contraceptives that target sperm mitochondria to reduce their ATP production would likely need to be paired with sperm-specific glycolysis inhibitors. However, since niclosamide ethanolamine impairs sperm motility through an ATP-independent mechanism, and niclosamide is FDA approved and not absorbed through mucosal membranes, it could be a useful ingredient in on-demand, vaginally applied contraceptives.


Asunto(s)
Adenosina Trifosfato , Motilidad Espermática , Humanos , Masculino , Adenosina Trifosfato/metabolismo , Motilidad Espermática/fisiología , Niclosamida/farmacología , Protones , Semen/metabolismo , Mitocondrias/metabolismo , Espermatozoides/metabolismo , Etanolamina/metabolismo , Etanolamina/farmacología , Etanolaminas/metabolismo , Etanolaminas/farmacología , Anticonceptivos/farmacología
9.
Handb Exp Pharmacol ; 251: 143-159, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29797089

RESUMEN

Uncoupling protein 1 (UCP1) is an integral protein of the inner mitochondrial membrane (IMM) that is expressed specifically in brown and beige fat depots. UCP1 is responsible for the production of heat to control core body temperature, the regulation of fat metabolism, and the energy balance. As an uncoupling protein, UCP1 transports H+ across the IMM in presence of long-chain fatty acids (FA), which makes brown fat mitochondria produce heat at the expense of ATP. However, the exact mechanism of UCP1 action has remained difficult to elucidate, because direct methods for studying currents generated by UCP1 were unavailable. Recently, the patch-clamp technique was successfully applied to brown and beige fat mitochondria to directly study H+ currents across the IMM and characterize UCP1 function. A new model of the UCP1 mechanism was proposed based on the patch-clamp analysis. In this model, both FA anions (FA-) and H+ are transport substrates of UCP1, and UCP1 operates as a non-canonical FA-/H+ symporter. Here, we summarize recent findings obtained with the patch-clamp technique that describe how UCP1 can transport not only H+ but also FA-.


Asunto(s)
Tejido Adiposo Pardo , Ácidos Grasos/metabolismo , Mitocondrias , Proteína Desacopladora 1/metabolismo , Metabolismo Energético , Proteína Desacopladora 1/genética
10.
Nature ; 471(7338): 387-91, 2011 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-21412339

RESUMEN

Steroid hormone progesterone released by cumulus cells surrounding the egg is a potent stimulator of human spermatozoa. It attracts spermatozoa towards the egg and helps them penetrate the egg's protective vestments. Progesterone induces Ca(2+) influx into spermatozoa and triggers multiple Ca(2+)-dependent physiological responses essential for successful fertilization, such as sperm hyperactivation, acrosome reaction and chemotaxis towards the egg. As an ovarian hormone, progesterone acts by regulating gene expression through a well-characterized progesterone nuclear receptor. However, the effect of progesterone upon transcriptionally silent spermatozoa remains unexplained and is believed to be mediated by a specialized, non-genomic membrane progesterone receptor. The identity of this non-genomic progesterone receptor and the mechanism by which it causes Ca(2+) entry remain fundamental unresolved questions in human reproduction. Here we elucidate the mechanism of the non-genomic action of progesterone on human spermatozoa by identifying the Ca(2+) channel activated by progesterone. By applying the patch-clamp technique to mature human spermatozoa, we found that nanomolar concentrations of progesterone dramatically potentiate CatSper, a pH-dependent Ca(2+) channel of the sperm flagellum. We demonstrate that human CatSper is synergistically activated by elevation of intracellular pH and extracellular progesterone. Interestingly, human CatSper can be further potentiated by prostaglandins, but apparently through a binding site other than that of progesterone. Because our experimental conditions did not support second messenger signalling, CatSper or a directly associated protein serves as the elusive non-genomic progesterone receptor of sperm. Given that the CatSper-associated progesterone receptor is sperm specific and structurally different from the genomic progesterone receptor, it represents a promising target for the development of a new class of non-hormonal contraceptives.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Progesterona/farmacología , Cola del Espermatozoide/efectos de los fármacos , Cola del Espermatozoide/metabolismo , Alprostadil/farmacología , Animales , Sitios de Unión , Canales de Calcio/química , Señalización del Calcio/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Conductividad Eléctrica , Femenino , Humanos , Concentración de Iones de Hidrógeno , Masculino , Ratones , Técnicas de Placa-Clamp , Progesterona/metabolismo , Receptores de Progesterona/agonistas , Receptores de Progesterona/química , Receptores de Progesterona/metabolismo , Especificidad de la Especie
11.
Proc Natl Acad Sci U S A ; 110(17): 6823-8, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23530196

RESUMEN

The female steroid hormone progesterone regulates ovulation and supports pregnancy, but also controls human sperm function within the female reproductive tract. Progesterone causes elevation of sperm intracellular Ca(2+) leading to sperm hyperactivation, acrosome reaction, and perhaps chemotaxis toward the egg. Although it has been suggested that progesterone-dependent Ca(2+) influx into human spermatozoa is primarily mediated by cationic channel of sperm (CatSper), the principal flagellar Ca(2+) channel of sperm, conclusive loss-of-function genetic evidence for activation of CatSper by progesterone has yet to be provided. Moreover, it is not clear whether the responsiveness of CatSper to progesterone is an innate property of human spermatozoa or is acquired as the result of exposure to the seminal plasma. Here, by recording ionic currents from spermatozoa of an infertile CatSper-deficient patient, we demonstrate that CatSper is indeed the principal Ca(2+) channel of human spermatozoa, and that it is strongly potentiated by progesterone. In addition, by recording CatSper currents from human epididymal and testicular spermatozoa, we show that CatSper sensitivity to progesterone arises early in sperm development and increases gradually to a peak when spermatozoa are ejaculated. These results unambiguously establish an important role of CatSper channel in human sperm nongenomic progesterone signaling and demonstrate that the molecular mechanism responsible for activation of CatSper by progesterone arises early in sperm development concurrently with the CatSper channel itself.


Asunto(s)
Canales de Calcio/metabolismo , Infertilidad Masculina/fisiopatología , Espermatozoides/química , Adulto , Canales de Calcio/deficiencia , Epidídimo/metabolismo , Humanos , Masculino , Técnicas de Placa-Clamp , Progesterona/farmacología , Espermatozoides/fisiología , Testículo/metabolismo
12.
Annu Rev Physiol ; 74: 453-75, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22017176

RESUMEN

Ion channels control the sperm ability to fertilize the egg by regulating sperm maturation in the female reproductive tract and by triggering key sperm physiological responses required for successful fertilization such as hyperactivated motility, chemotaxis, and the acrosome reaction. CatSper, a pH-regulated, calcium-selective ion channel, and KSper (Slo3) are core regulators of sperm tail calcium entry and sperm hyperactivated motility. Many other channels had been proposed as regulating sperm activity without direct measurements. With the development of the sperm patch-clamp technique, CatSper and KSper have been confirmed as the primary spermatozoan ion channels. In addition, the voltage-gated proton channel Hv1 has been identified in human sperm tail, and the P2X2 ion channel has been identified in the midpiece of mouse sperm. Mutations and deletions in sperm-specific ion channels affect male fertility in both mice and humans without affecting other physiological functions. The uniqueness of sperm ion channels makes them ideal pharmaceutical targets for contraception. In this review we discuss how ion channels regulate sperm physiology.


Asunto(s)
Fertilidad/fisiología , Canales Iónicos/fisiología , Espermatozoides/fisiología , Animales , Canales de Calcio/fisiología , Quimiotaxis/fisiología , Femenino , Humanos , Masculino , Ratones , Técnicas de Placa-Clamp , Capacitación Espermática/fisiología , Motilidad Espermática/fisiología , Espermatozoides/metabolismo , Espermatozoides/ultraestructura
14.
Nature ; 439(7077): 737-40, 2006 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-16467839

RESUMEN

In mammals, sperm cells become motile during ejaculation and swim up the female reproductive tract. Before fertilization and to overcome various barriers, their motility must be hyperactivated, a motion that is characterized by vigorous asymmetric tail beating. Hyperactivation requires an increase in calcium in the flagella, a process that probably involves plasmalemmal ion channels. Numerous attempts in the past two decades to understand sperm cell channels have been frustrated by the difficulty of measuring spermatozoan transmembrane ion currents. Here, by using a simple approach to patch-clamp spermatozoa and to characterize whole-spermatozoan currents, we describe a constitutively active flagellar calcium channel that is strongly potentiated by intracellular alkalinization. This current is not present in spermatozoa lacking the sperm-specific putative ion channel protein, CatSper1. This plasma membrane protein of the six transmembrane-spanning ion channel superfamily is specifically localized to the principal piece of the sperm tail and is required for sperm cell hyperactivation and male fertility. Our results identify CatSper1 as a component of the key flagellar calcium channel, and suggest that intracellular alkalinization potentiates CatSper current to increase intraflagellar calcium and induce sperm hyperactivation.


Asunto(s)
Álcalis/farmacología , Canales de Calcio/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Animales , Calcio/metabolismo , Calcio/farmacología , Canales de Calcio/deficiencia , Canales de Calcio/genética , Conductividad Eléctrica , Concentración de Iones de Hidrógeno , Transporte Iónico , Masculino , Ratones , Especificidad de Órganos , Técnicas de Placa-Clamp , Cola del Espermatozoide/efectos de los fármacos , Cola del Espermatozoide/metabolismo , Espermatozoides/fisiología , Especificidad por Sustrato
15.
Antioxidants (Basel) ; 12(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36670876

RESUMEN

Coenzyme Q (CoQ, aka ubiquinone) is a key component of the mitochondrial electron transport chain (ETC) and membrane-incorporated antioxidant. CoQ10 deficiencies encompass a heterogeneous spectrum of clinical phenotypes and can be caused by hereditary mutations in the biosynthesis pathway or result from pharmacological interventions such as HMG-CoA Reductase inhibitors, and statins, which are widely used to treat hypercholesterolemia and prevent cardiovascular disease. How CoQ deficiency affects individual tissues and cell types, particularly mitochondrial-rich ones such as brown adipose tissue (BAT), has remained poorly understood. Here we show that pharmacological and genetic models of BAT CoQ deficiency show altered respiration that can only in part be explained by classical roles of CoQ in the respiration chain. Instead, we found that CoQ strongly impacts brown and beige adipocyte respiration via the regulation of uncoupling protein 1 (UCP1) expression. CoQ deficiency in BAT robustly decreases UCP1 protein levels and uncoupled respiration unexpectedly, resulting in increased inner mitochondrial membrane potential and decreased ADP/ATP ratios. Suppressed UCP1 expression was also observed in a BAT-specific in vivo model of CoQ deficiency and resulted in enhanced cold sensitivity. These findings demonstrate an as yet unappreciated role of CoQ in the transcriptional regulation of key thermogenic genes and functions.

16.
J Clin Invest ; 132(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35579943

RESUMEN

Molecularly targeted cancer therapy has improved outcomes for patients with cancer with targetable oncoproteins, such as mutant EGFR in lung cancer. Yet, the long-term survival of these patients remains limited, because treatment responses are typically incomplete. One potential explanation for the lack of complete and durable responses is that oncogene-driven cancers with activating mutations of EGFR often harbor additional co-occurring genetic alterations. This hypothesis remains untested for most genetic alterations that co-occur with mutant EGFR. Here, we report the functional impact of inactivating genetic alterations of the mRNA splicing factor RNA-binding motif 10 (RBM10) that co-occur with mutant EGFR. RBM10 deficiency decreased EGFR inhibitor efficacy in patient-derived EGFR-mutant tumor models. RBM10 modulated mRNA alternative splicing of the mitochondrial apoptotic regulator Bcl-x to regulate tumor cell apoptosis during treatment. Genetic inactivation of RBM10 diminished EGFR inhibitor-mediated apoptosis by decreasing the ratio of (proapoptotic) Bcl-xS to (antiapoptotic) Bcl-xL isoforms of Bcl-x. RBM10 deficiency was a biomarker of poor response to EGFR inhibitor treatment in clinical samples. Coinhibition of Bcl-xL and mutant EGFR overcame the resistance induced by RBM10 deficiency. This study sheds light on the role of co-occurring genetic alterations and on the effect of splicing factor deficiency on the modulation of sensitivity to targeted kinase inhibitor cancer therapy.


Asunto(s)
Factor X , Neoplasias Pulmonares , Apoptosis/genética , Línea Celular Tumoral , Receptores ErbB/genética , Factor X/uso terapéutico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Factores de Empalme de ARN , ARN Mensajero/genética , Motivos de Unión al ARN , Proteínas de Unión al ARN/metabolismo
17.
Mol Hum Reprod ; 17(8): 478-99, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21642646

RESUMEN

Upon ejaculation, mammalian spermatozoa have to undergo a sequence of physiological transformations within the female reproductive tract that will allow them to reach and fertilize the egg. These include initiation of motility, hyperactivation of motility and perhaps chemotaxis toward the egg, and culminate in the acrosome reaction that permits sperm to penetrate the protective vestments of the egg. These physiological responses are triggered through the activation of sperm ion channels that cause elevations of sperm intracellular pH and Ca(2+) in response to certain cues within the female reproductive tract. Despite their key role in sperm physiology and their absolute requirement for the process of fertilization, sperm ion channels remain poorly understood due to the extreme difficulty in application of the patch-clamp technique to spermatozoa. This review covers the topic of sperm ion channels in the following order: first, we discuss how the intracellular Ca(2+) and pH signaling mediated by sperm ion channels controls sperm behavior during the process of fertilization. Then, we briefly cover the history of the methodology to study sperm ion channels, which culminated in the recent development of a reproducible whole-cell patch-clamp technique for mouse and human cells. We further discuss the main approaches used to patch-clamp mature mouse and human spermatozoa. Finally, we focus on the newly discovered sperm ion channels CatSper, KSper (Slo3) and HSper (H(v)1), identified by the sperm patch-clamp technique. We conclude that the patch-clamp technique has markedly improved and shifted our understanding of the sperm ion channels, in addition to revealing significant species-specific differences in these channels. This method is critical for identification of the molecular mechanisms that control sperm behavior within the female reproductive tract and make fertilization possible.


Asunto(s)
Canales de Calcio/fisiología , Técnicas de Placa-Clamp/métodos , Espermatozoides/fisiología , Reacción Acrosómica , Animales , Calcio/metabolismo , Quimiotaxis , Femenino , Fertilización/fisiología , Humanos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/fisiología , Canales Iónicos , Canales de Potasio de Gran Conductancia Activados por el Calcio , Masculino , Ratones , Transducción de Señal/fisiología , Motilidad Espermática/fisiología , Interacciones Espermatozoide-Óvulo , Espermatozoides/citología , Espermatozoides/metabolismo
18.
J Vis Exp ; (168)2021 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-33645583

RESUMEN

Recording of the electrical activity from one of the smallest cells of a mammalian organism- a sperm cell- has been a challenging task for electrophysiologists for many decades. The method known as "spermatozoan patch clamp" was introduced in 2006. It has enabled the direct recording of ion channel activity in whole-cell and cell-attached configurations and has been instrumental in describing sperm cell physiology and the molecular identity of various calcium, potassium, sodium, chloride, and proton ion channels. However, recording from single spermatozoa requires advanced skills and training in electrophysiology. This detailed protocol summarizes the step-by-step procedure and highlights several 'tricks-of-the-trade' in order to make it available to anyone who wishes to explore the fascinating physiology of the sperm cell. Specifically, the protocol describes recording from human and murine sperm cells but can be adapted to essentially any mammalian sperm cell of any species. The protocol covers important details of the application of this technique, such as isolation of sperm cells, selection of reagents and equipment, immobilization of the highly motile cells, formation of the tight (Gigaohm) seal between a recording electrode and the plasma membrane of the sperm cells, transition into the whole-spermatozoan mode (also known as break-in), and exemplary recordings of the sperm cell calcium ion channel, CatSper, from six mammalian species. The advantages and limitations of the sperm patch clamp method, as well as the most critical steps, are discussed.


Asunto(s)
Membrana Celular/fisiología , Fenómenos Electrofisiológicos , Espermatozoides/fisiología , Animales , Calcio/metabolismo , Membrana Celular/efectos de los fármacos , Tamaño de la Célula , Disección , Fenómenos Electrofisiológicos/efectos de los fármacos , Flagelos/efectos de los fármacos , Flagelos/fisiología , Humanos , Concentración de Iones de Hidrógeno , Transporte Iónico/efectos de los fármacos , Macaca mulatta , Masculino , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Perfusión , Progesterona/farmacología , Soluciones , Espermatozoides/citología , Espermatozoides/efectos de los fármacos
19.
Elife ; 102021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34463251

RESUMEN

Ca2+ entry into mitochondria is through the mitochondrial calcium uniporter complex (MCUcx), a Ca2+-selective channel composed of five subunit types. Two MCUcx subunits (MCU and EMRE) span the inner mitochondrial membrane, while three Ca2+-regulatory subunits (MICU1, MICU2, and MICU3) reside in the intermembrane space. Here, we provide rigorous analysis of Ca2+ and Na+ fluxes via MCUcx in intact isolated mitochondria to understand the function of MICU subunits. We also perform direct patch clamp recordings of macroscopic and single MCUcx currents to gain further mechanistic insights. This comprehensive analysis shows that the MCUcx pore, composed of the EMRE and MCU subunits, is not occluded nor plugged by MICUs during the absence or presence of extramitochondrial Ca2+ as has been widely reported. Instead, MICUs potentiate activity of MCUcx as extramitochondrial Ca2+ is elevated. MICUs achieve this by modifying the gating properties of MCUcx allowing it to spend more time in the open state.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Línea Celular , Células Cultivadas , Ratones , Proteínas de Transporte de Membrana Mitocondrial/genética , Imagen Molecular , Técnicas de Placa-Clamp , Sodio
20.
J Physiol ; 588(Pt 23): 4667-72, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20679352

RESUMEN

Elevations of sperm intracellular pH and Ca(2+) regulate sperm motility, chemotaxis, capacitation and the acrosome reaction, and play a vital role in the ability of the sperm cell to reach and fertilise the egg. In human spermatozoa, the flagellar voltage-gated proton channel Hv1 is the main H(+) extrusion pathway that controls sperm intracellular pH, and the pH-dependent flagellar Ca²(+) channel CatSper is the main pathway for Ca²(+) entry as measured by the whole-cell patch clamp technique. Hv1 and CatSper channels are co-localized within the principal piece of the sperm flagellum. Hv1 is dedicated to proton extrusion from flagellum and is activated by membrane depolarisation, an alkaline extracellular environment, the endocannabinoid anandamide, and removal of extracellular zinc, a potent Hv1 blocker. The CatSper channel is strongly potentiated by intracellular alkalinisation. Since Hv1 and CatSper channels are located in the same subcellular domain, proton extrusion via Hv1 channels should induce intraflagellar alkalinisation and activate CatSper ion channels. Therefore the combined action of Hv1 and CatSper channels in human spermatozoa can induce elevation of both intracellular pH and Ca²(+) required for sperm activation in the female reproductive tract. Here, we discuss how Hv1 and CatSper channels regulate human sperm physiology and the differences in control of sperm intracellular pH and Ca²(+) between species.


Asunto(s)
Canales de Calcio/fisiología , Canales Iónicos/fisiología , Espermatozoides/fisiología , Animales , Señalización del Calcio , Humanos , Activación del Canal Iónico/fisiología , Masculino
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda