Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Biol Chem ; 287(5): 3249-56, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22157004

RESUMEN

Methylation of lysine 36 on histone H3 (H3K36) is catalyzed by the Set2 methyltransferase and is linked to transcriptional regulation. Previous studies have shown that trimethylation of H3K36 by Set2 is directed through its association with the phosphorylated repeats of the RNA polymerase C-terminal domain (RNAPII CTD). Here, we show that disruption of this interaction through the use of yeast mutants defective in CTD phosphorylation at serine 2 results in a destabilization of Set2 protein levels and H3K36 methylation. Consistent with this, we find that Set2 has a short half-life and is co-regulated, with RNAPII CTD phosphorylation levels, during logarithmic growth in yeast. To probe the functional consequence of uncoupling Set2-RNAPII regulation, we expressed a truncated and more stable form of Set2 that is capable of dimethylation but not trimethylation in vivo. Results of high throughput synthetic genetic analyses show that this Set2 variant has distinct genetics from either SET2 or set2Δ and is synthetically sick or lethal with a number of transcription elongation mutants. Collectively, these results provide molecular insight into the regulation of Set2 protein levels that influence H3K36 methylation states.


Asunto(s)
Histonas/metabolismo , Metiltransferasas/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Histonas/genética , Metilación , Metiltransferasas/genética , Fosforilación/fisiología , Estabilidad Proteica , Estructura Terciaria de Proteína , ARN Polimerasa II/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Mol Cell Biol ; 25(8): 3305-16, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15798214

RESUMEN

Histone methylation and the enzymes that mediate it are important regulators of chromatin structure and gene transcription. In particular, the histone H3 lysine 36 (K36) methyltransferase Set2 has recently been shown to associate with the phosphorylated C-terminal domain (CTD) of RNA polymerase II (RNAPII), implying that this enzyme has an important role in the transcription elongation process. Here we show that a novel domain in the C terminus of Set2 is responsible for interaction between Set2 and RNAPII. This domain, termed the Set2 Rpb1 interacting (SRI) domain, is encompassed by amino acid residues 619 to 718 in Set2 and is found to occur in a number of putative Set2 homologs from Schizosaccharomyces pombe to humans. Unexpectedly, BIACORE analysis reveals that the SRI domain binds specifically, and with high affinity, to CTD repeats that are doubly modified (serine 2 and serine 5 phosphorylated), indicating that Set2 association across the body of genes requires a specific pattern of phosphorylated RNAPII. Deletion of the SRI domain not only abolishes Set2-RNAPII interaction but also abolishes K36 methylation in vivo, indicating that this interaction is required for establishing K36 methylation on chromatin. Using 6-azauracil (6AU) as an indicator of transcription elongation defects, we found that deletion of the SRI domain conferred a strong resistance to this compound, which was identical to that observed with set2 deletion mutants. Furthermore, yeast strains carrying set2 alleles that are catalytically inactive or yeast strains bearing point mutations at K36 were also found to be resistant to 6AU. These data suggest that it is the methylation by Set2 that affects transcription elongation. In agreement with this, we have determined that deletion of SET2, its SRI domain, or amino acid substitutions at K36 result in an alteration of RNAPII occupancy levels over transcribing genes. Taken together, these data indicate K36 methylation, established by the SRI domain-mediated association of Set2 with RNAPII, plays an important role in the transcription elongation process.


Asunto(s)
Histonas/metabolismo , Metiltransferasas/química , Metiltransferasas/fisiología , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Transcripción Genética/fisiología , Uracilo/análogos & derivados , Alelos , Sustitución de Aminoácidos , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Secuencia Conservada , Lisina/metabolismo , Metilación , Metiltransferasas/metabolismo , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Transcripción Genética/genética , Uracilo/farmacología
3.
Mol Cell Biol ; 28(16): 4915-26, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18541663

RESUMEN

Set2 (KMT3)-dependent methylation (me) of histone H3 at lysine 36 (H3K36) promotes deacetylation of transcribed chromatin and represses cryptic promoters within genes. Although Set2 is the only methyltransferase (KMTase) for H3K36 in yeast, it is not known if Set2 is regulated or whether the different methylation states at H3K36 are functionally distinct. Here we show that the N-terminal 261 residues of Set2 (Set2(1-261)), containing the SET KMTase domain, are sufficient for H3K36me2, histone deacetylation, and repression of cryptic promoters at STE11. Set2-catalyzed H3K36me2 does not require either Ctk1-dependent phosphorylation of RNA polymerase II (RNAPII) or the presence of the phospho-C-terminal domain (CTD) interaction (SRI) domain of Set2. This finding is consistent with a known correlation between H3K36me2 and whether a gene is on or off, but not the level of activity of a gene. By contrast, H3K36me3 requires Spt6, proline 38 on histone H3 (H3P38), the CTD of RNAPII, Ctk1, and the C-terminal SRI domain of Set2. We suggest that the C-terminal region of Set2, in conjunction with the phosphorylated CTD of RNAPII, influences the KMTase activity to promote H3K36me3 during transcription elongation.


Asunto(s)
Histonas/metabolismo , Lisina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Acetilación , Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica , Chaperonas de Histonas , Metilación , Proteínas Nucleares/química , Regiones Promotoras Genéticas/genética , Estructura Terciaria de Proteína , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Elongación Transcripcional
4.
Methods ; 40(4): 296-302, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17101440

RESUMEN

The continuing identification of new histone post-translational modifications and ongoing discovery of their roles in nuclear processes has increased the demand for quick, efficient, and precise methods for their analysis. In the budding yeast Saccharomyces cerevisiae, a variety of methods exist for the characterization of histone modifications on a global scale. However, a wide gap in preparation time and histone purity exists between the most widely used extraction methods, which include a simple whole cell extraction (WCE) and an intensive histone extraction. In this work we evaluate various published WCE buffers for their relative effectiveness in the detection of histone modifications by Western blot analysis. We also present a precise, yet time-efficient method for the detection of subtle changes in histone modification levels. Lastly, we present a protocol for the rapid small-scale purification of nuclei that improves the performance of antibodies that do not work efficiently in WCE. These new methods are ideal for the analysis of histone modifications and could be applied to the analysis and improved detection of other nuclear proteins.


Asunto(s)
Fraccionamiento Celular/métodos , Código de Histonas , Histonas/metabolismo , Proteínas Nucleares/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Tampones (Química) , Núcleo Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Cariometría/métodos , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Volumetría/métodos
5.
Genes Dev ; 17(5): 654-63, 2003 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-12629047

RESUMEN

Histone methylation is now realized to be a pivotal regulator of gene transcription. Although recent studies have shed light on a trans-histone regulatory pathway that controls H3 Lys 4 and H3 Lys 79 methylation in Saccharomyces cerevisiae, the regulatory pathway that affects Set2-mediated H3 Lys 36 methylation is unknown. To determine the functions of Set2, and identify factors that regulate its site of methylation, we genomically tagged Set2 and identified its associated proteins. Here, we show that Set2 is associated with Rbp1 and Rbp2, the two largest subunits of RNA polymerase II (RNA pol II). Moreover, we find that this association is specific for the interaction of Set2 with the hyperphosphorylated form of RNA pol II. We further show that deletion of the RNA pol II C-terminal domain (CTD) kinase Ctk1, or partial deletion of the CTD, results in a selective abolishment of H3 Lys 36 methylation, implying a pathway of Set2 recruitment to chromatin and a role for H3 Lys 36 methylation in transcription elongation. In support, chromatin immunoprecipitation assays demonstrate the presence of Set2 methylation in the coding regions, as well as promoters, of genes regulated by Ctk1 or Set2. These data document a new link between histone methylation and the transcription apparatus and uncover a regulatory pathway that is selective for H3 Lys 36 methylation.


Asunto(s)
Histonas/metabolismo , Proteínas Quinasas , ARN Polimerasa II/genética , Metilación de ADN , Regulación Fúngica de la Expresión Génica/fisiología , Metiltransferasas/metabolismo , Péptidos/metabolismo , Fosforilación , Estructura Terciaria de Proteína , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda