Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Virol ; 95(19): e0044921, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34232063

RESUMEN

Visualizing the transmission and dissemination of human immunodeficiency virus type 1 (HIV-1) in real time in humanized mouse models is a robust tool to investigate viral replication during treatments and in tissue reservoirs. However, the stability and expression of HIV-1 reporter genes are obstacles for long-term serial imaging in vivo. Two replication-competent CCR5-tropic HIV-1 reporter constructs were created that encode either nanoluciferase (nLuc) or a near-infrared fluorescent protein (iRFP) upstream of nef. HIV-1 reporter virus replication and reporter gene expression was measured in cell culture and in humanized mice. While reporter gene expression in vivo correlated initially with plasma viremia, expression decreased after 4 to 5 weeks despite high plasma viremia. The reporter genes were codon optimized to remove cytosine/guanine (CG) dinucleotides, and new CO-nLuc and CO-iRFP viruses were reconstructed. Removal of CG dinucleotides in HIV-1 reporter viruses improved replication in vitro and reporter expression in vivo and ex vivo. Both codon-optimized reporter viruses could be visualized during coinfection and in vivo reporter gene expression during treatment failure preceded detection of plasma viremia. While the dynamic range of CO-iRFP HIV-1 was lower than that of CO-nLuc HIV-1, both viruses could have utility in studying and visualizing HIV-1 infection in humanized mice. IMPORTANCE Animal models are important for studying HIV-1 pathogenesis and treatments. We developed two viruses each encoding a reporter gene that can be expressed in cells after infection. This study shows that HIV-1 infection can be visualized by noninvasive, whole-body imaging in mice with human immune cells over time by reporter expression. We improved reporter expression to reflect HIV-1 replication and showed that two viral variants can be tracked over time in the same animal and can predict failure of antiretroviral therapy to suppress virus.


Asunto(s)
Fosfatos de Dinucleósidos/metabolismo , Genes Reporteros , Infecciones por VIH/virología , VIH-1/fisiología , Replicación Viral , Animales , Linfocitos T CD4-Positivos/virología , Expresión Génica , VIH-1/genética , Humanos , Luciferasas/genética , Mediciones Luminiscentes , Proteínas Luminiscentes/genética , Ratones , Imagen Óptica , Viremia , Imagen de Cuerpo Entero
2.
J Virol ; 93(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30894467

RESUMEN

Two mutations, G112D and M230I, were selected in the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) by a novel nonnucleoside reverse transcriptase inhibitor (NNRTI). G112D is located near the HIV-1 polymerase active site; M230I is located near the hydrophobic region where NNRTIs bind. Thus, M230I could directly interfere with NNRTI binding but G112D could not. Biochemical and virological assays were performed to analyze the effects of these mutations individually and in combination. M230I alone caused a reduction in susceptibility to NNRTIs, while G112D alone did not. The G112D/M230I double mutant was less susceptible to NNRTIs than was M230I alone. In contrast, both mutations affected the ability of RT to incorporate nucleoside analogs. We suggest that the mutations interact with each other via the bound nucleic acid substrate; the nucleic acid forms part of the polymerase active site, which is near G112D. The positioning of the nucleic acid is influenced by its interactions with the "primer grip" region and could be influenced by the M230I mutation.IMPORTANCE Although antiretroviral therapy (ART) is highly successful, drug-resistant variants can arise that blunt the efficacy of ART. New inhibitors that are broadly effective against known drug-resistant variants are needed, although such compounds might select for novel resistance mutations that affect the sensitivity of the virus to other compounds. Compound 13 selects for resistance mutations that differ from traditional NNRTI resistance mutations. These mutations cause increased sensitivity to NRTIs, such as AZT.


Asunto(s)
Transcriptasa Inversa del VIH/genética , VIH-1/efectos de los fármacos , Fármacos Anti-VIH/farmacología , Línea Celular , Farmacorresistencia Viral/genética , Células HEK293 , Infecciones por VIH/virología , Transcriptasa Inversa del VIH/efectos de los fármacos , VIH-1/genética , Humanos , Mutación/efectos de los fármacos , Nucleósidos/farmacología , Inhibidores de la Transcriptasa Inversa/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda