Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
RNA ; 29(11): 1803-1817, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37625853

RESUMEN

The mammalian mRNA 5' cap structures play important roles in cellular processes such as nuclear export, efficient translation, and evading cellular innate immune surveillance and regulating 5'-mediated mRNA turnover. Hence, installation of the proper 5' cap is crucial in therapeutic applications of synthetic mRNA. The core 5' cap structure, Cap-0, is generated by three sequential enzymatic activities: RNA 5' triphosphatase, RNA guanylyltransferase, and cap N7-guanine methyltransferase. Vaccinia virus RNA capping enzyme (VCE) is a heterodimeric enzyme that has been widely used in synthetic mRNA research and manufacturing. The large subunit of VCE D1R exhibits a modular structure where each of the three structural domains possesses one of the three enzyme activities, whereas the small subunit D12L is required to activate the N7-guanine methyltransferase activity. Here, we report the characterization of a single-subunit RNA capping enzyme from an amoeba giant virus. Faustovirus RNA capping enzyme (FCE) exhibits a modular array of catalytic domains in common with VCE and is highly efficient in generating the Cap-0 structure without an activation subunit. Phylogenetic analysis suggests that FCE and VCE are descended from a common ancestral capping enzyme. We found that compared to VCE, FCE exhibits higher specific activity, higher activity toward RNA containing secondary structures and a free 5' end, and a broader temperature range, properties favorable for synthetic mRNA manufacturing workflows.


Asunto(s)
Nucleotidiltransferasas , ARN , Animales , Filogenia , ARN Mensajero/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/química , Metiltransferasas/genética , Guanina , Caperuzas de ARN/genética , Mamíferos/genética
2.
J Biol Chem ; 299(12): 105437, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37944617

RESUMEN

The zwitterions phosphorylcholine (PC) and phosphoethanolamine (PE) are often found esterified to certain sugars in polysaccharides and glycoconjugates in a wide range of biological species. One such modification involves PC attachment to the 6-carbon of N-acetylglucosamine (GlcNAc-6-PC) in N-glycans and glycosphingolipids (GSLs) of parasitic nematodes, a modification that helps the parasite evade host immunity. Knowledge of enzymes involved in the synthesis and degradation of PC and PE modifications is limited. More detailed studies on such enzymes would contribute to a better understanding of the function of PC modifications and have potential application in the structural analysis of zwitterion-modified glycans. In this study, we used functional metagenomic screening to identify phosphodiesterases encoded in a human fecal DNA fosmid library that remove PC from GlcNAc-6-PC. A novel bacterial phosphodiesterase was identified and biochemically characterized. This enzyme (termed GlcNAc-PDase) shows remarkable substrate preference for GlcNAc-6-PC and GlcNAc-6-PE, with little or no activity on other zwitterion-modified hexoses. The identified GlcNAc-PDase protein sequence is a member of the large endonuclease/exonuclease/phosphatase superfamily where it defines a distinct subfamily of related sequences of previously unknown function, mostly from Clostridium bacteria species. Finally, we demonstrate use of GlcNAc-PDase to confirm the presence of GlcNAc-6-PC in N-glycans and GSLs of the parasitic nematode Brugia malayi in a glycoanalytical workflow.


Asunto(s)
Hidrolasas Diéster Fosfóricas , Azúcares , Humanos , Hidrolasas Diéster Fosfóricas/genética , Carbohidratos , Glicoconjugados/química , Polisacáridos/metabolismo , Acetilglucosamina/metabolismo
3.
J Chem Inf Model ; 63(5): 1438-1453, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36808989

RESUMEN

Direct-acting antivirals for the treatment of the COVID-19 pandemic caused by the SARS-CoV-2 virus are needed to complement vaccination efforts. Given the ongoing emergence of new variants, automated experimentation, and active learning based fast workflows for antiviral lead discovery remain critical to our ability to address the pandemic's evolution in a timely manner. While several such pipelines have been introduced to discover candidates with noncovalent interactions with the main protease (Mpro), here we developed a closed-loop artificial intelligence pipeline to design electrophilic warhead-based covalent candidates. This work introduces a deep learning-assisted automated computational workflow to introduce linkers and an electrophilic "warhead" to design covalent candidates and incorporates cutting-edge experimental techniques for validation. Using this process, promising candidates in the library were screened, and several potential hits were identified and tested experimentally using native mass spectrometry and fluorescence resonance energy transfer (FRET)-based screening assays. We identified four chloroacetamide-based covalent inhibitors of Mpro with micromolar affinities (KI of 5.27 µM) using our pipeline. Experimentally resolved binding modes for each compound were determined using room-temperature X-ray crystallography, which is consistent with the predicted poses. The induced conformational changes based on molecular dynamics simulations further suggest that the dynamics may be an important factor to further improve selectivity, thereby effectively lowering KI and reducing toxicity. These results demonstrate the utility of our modular and data-driven approach for potent and selective covalent inhibitor discovery and provide a platform to apply it to other emerging targets.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Humanos , SARS-CoV-2/metabolismo , Antivirales/farmacología , Pandemias , Inteligencia Artificial , Inhibidores de Proteasas/farmacología , Simulación del Acoplamiento Molecular
4.
J Chem Inf Model ; 62(1): 116-128, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34793155

RESUMEN

Despite the recent availability of vaccines against the acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the search for inhibitory therapeutic agents has assumed importance especially in the context of emerging new viral variants. In this paper, we describe the discovery of a novel noncovalent small-molecule inhibitor, MCULE-5948770040, that binds to and inhibits the SARS-Cov-2 main protease (Mpro) by employing a scalable high-throughput virtual screening (HTVS) framework and a targeted compound library of over 6.5 million molecules that could be readily ordered and purchased. Our HTVS framework leverages the U.S. supercomputing infrastructure achieving nearly 91% resource utilization and nearly 126 million docking calculations per hour. Downstream biochemical assays validate this Mpro inhibitor with an inhibition constant (Ki) of 2.9 µM (95% CI 2.2, 4.0). Furthermore, using room-temperature X-ray crystallography, we show that MCULE-5948770040 binds to a cleft in the primary binding site of Mpro forming stable hydrogen bond and hydrophobic interactions. We then used multiple µs-time scale molecular dynamics (MD) simulations and machine learning (ML) techniques to elucidate how the bound ligand alters the conformational states accessed by Mpro, involving motions both proximal and distal to the binding site. Together, our results demonstrate how MCULE-5948770040 inhibits Mpro and offers a springboard for further therapeutic design.


Asunto(s)
COVID-19 , Inhibidores de Proteasas , Antivirales , Proteasas 3C de Coronavirus , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ácido Orótico/análogos & derivados , Piperazinas , SARS-CoV-2
5.
Phys Chem Chem Phys ; 24(6): 3586-3597, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35089990

RESUMEN

Biomacromolecules are inherently dynamic, and their dynamics are interwoven into function. The fast collective vibrational dynamics in proteins occurs in the low picosecond timescale corresponding to frequencies of ∼5-50 cm-1. This sub-to-low THz frequency regime covers the low-amplitude collective breathing motions of a whole protein and vibrations of the constituent secondary structure elements, such as α-helices, ß-sheets and loops. We have used inelastic neutron scattering experiments in combination with molecular dynamics simulations to demonstrate the vibrational dynamics softening of HIV-1 protease, a target of HIV/AIDS antivirals, upon binding of a tight clinical inhibitor darunavir. Changes in the vibrational density of states of matching structural elements in the two monomers of the homodimeric protein are not identical, indicating asymmetric effects of darunavir on the vibrational dynamics. Three of the 11 major secondary structure elements contribute over 40% to the overall changes in the vibrational density of states upon darunavir binding. Molecular dynamics simulations informed by experiments allowed us to estimate that the altered vibrational dynamics of the protease would contribute -3.6 kcal mol-1 at 300 K, or 25%, to the free energy of darunavir binding. As HIV-1 protease drug resistance remains a concern, our results open a new avenue to help establish a direct quantitative link between protein vibrational dynamics and drug resistance.


Asunto(s)
Proteasa del VIH/química , VIH-1/enzimología , Simulación de Dinámica Molecular , Vibración , Neutrones , Análisis Espectral
6.
J Biol Chem ; 295(50): 17365-17373, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33060199

RESUMEN

The main protease (3CL Mpro) from SARS-CoV-2, the etiological agent of COVID-19, is an essential enzyme for viral replication. 3CL Mpro possesses an unusual catalytic dyad composed of Cys145 and His41 residues. A critical question in the field has been what the protonation states of the ionizable residues in the substrate-binding active-site cavity are; resolving this point would help understand the catalytic details of the enzyme and inform rational drug development against this pernicious virus. Here, we present the room-temperature neutron structure of 3CL Mpro, which allowed direct determination of hydrogen atom positions and, hence, protonation states in the protease. We observe that the catalytic site natively adopts a zwitterionic reactive form in which Cys145 is in the negatively charged thiolate state and His41 is doubly protonated and positively charged, instead of the neutral unreactive state usually envisaged. The neutron structure also identified the protonation states, and thus electrical charges, of all other amino acid residues and revealed intricate hydrogen-bonding networks in the active-site cavity and at the dimer interface. The fine atomic details present in this structure were made possible by the unique scattering properties of the neutron, which is an ideal probe for locating hydrogen positions and experimentally determining protonation states at near-physiological temperature. Our observations provide critical information for structure-assisted and computational drug design, allowing precise tailoring of inhibitors to the enzyme's electrostatic environment.


Asunto(s)
Proteasas 3C de Coronavirus/química , Modelos Moleculares , Neutrones , SARS-CoV-2/genética , Dominio Catalítico , Cristalografía por Rayos X
7.
Biochem Biophys Res Commun ; 566: 30-35, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34111669

RESUMEN

The emergence of multidrug resistant (MDR) HIV strains severely reduces the effectiveness of antiretroviral therapy. Clinical inhibitor darunavir (1) has picomolar binding affinity for HIV-1 protease (PR), however, drug resistant variants like PRS17 show poor inhibition by 1, despite the presence of only two mutated residues in the inhibitor-binding site. Antiviral inhibitors that target MDR proteases like PRS17 would be valuable as therapeutic agents. Inhibitors 2 and 3 derived from 1 through substitutions at P1, P2 and P2' positions exhibit 3.4- to 500-fold better inhibition than clinical inhibitors for PRS17 with the exception of amprenavir. Crystal structures of PRS17/2 and PRS17/3 reveal how these inhibitors target the two active site mutations of PRS17. The substituted methoxy P2 group of 2 forms new interactions with G48V mutation, while the modified bis-fluoro-benzyl P1 group of 3 forms a halogen interaction with V82S mutation, contributing to improved inhibition of PRS17.


Asunto(s)
Darunavir/análogos & derivados , Darunavir/farmacología , Inhibidores de la Proteasa del VIH/química , Inhibidores de la Proteasa del VIH/farmacología , Proteasa del VIH/metabolismo , Dominio Catalítico/efectos de los fármacos , Farmacorresistencia Viral , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Proteasa del VIH/química , Proteasa del VIH/genética , VIH-1/efectos de los fármacos , VIH-1/genética , Humanos , Modelos Moleculares , Mutación Puntual/efectos de los fármacos
8.
Biochem Biophys Res Commun ; 519(1): 61-66, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31474336

RESUMEN

Drug-resistance threatens effective treatment of HIV/AIDS. Clinical inhibitors, including darunavir (1), are ineffective for highly resistant protease mutant PR20, however, antiviral compound 2 derived from 1 with fused tricyclic group at P2, extended amino-benzothiazole P2' ligand and two fluorine atoms on P1 shows 16-fold better inhibition of PR20 enzyme activity. Crystal structures of PR20 and wild-type PR complexes reveal how the extra groups of 2 counteract the expanded ligand-binding pocket, dynamic flaps, and faster dimer dissociation of PR20.


Asunto(s)
Antivirales/farmacología , Farmacorresistencia Viral/efectos de los fármacos , Inhibidores de la Proteasa del VIH/farmacología , Proteasa del VIH/metabolismo , VIH-1/efectos de los fármacos , Antivirales/química , Cristalografía por Rayos X , Inhibidores de la Proteasa del VIH/química , Humanos , Cinética , Modelos Moleculares , Conformación Molecular , Mutación
9.
Commun Biol ; 6(1): 1159, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957287

RESUMEN

A critical step for SARS-CoV-2 assembly and maturation involves the autoactivation of the main protease (MProWT) from precursor polyproteins. Upon expression, a model precursor of MProWT mediates its own release at its termini rapidly to yield a mature dimer. A construct with an E290A mutation within MPro exhibits time dependent autoprocessing of the accumulated precursor at the N-terminal nsp4/nsp5 site followed by the C-terminal nsp5/nsp6 cleavage. In contrast, a precursor containing E290A and R298A mutations (MProM) displays cleavage only at the nsp4/nsp5 site to yield an intermediate monomeric product, which is cleaved at the nsp5/nsp6 site only by MProWT. MProM and the catalytic domain (MPro1-199) fused to the truncated nsp4 region also show time-dependent conversion in vitro to produce MProM and MPro1-199, respectively. The reactions follow first-order kinetics indicating that the nsp4/nsp5 cleavage occurs via an intramolecular mechanism. These results support a mechanism involving an N-terminal intramolecular cleavage leading to an increase in the dimer population and followed by an intermolecular cleavage at the C-terminus. Thus, targeting the predominantly monomeric MPro precursor for inhibition may lead to the identification of potent drugs for treatment.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Mutación , Proteasas 3C de Coronavirus/genética
10.
J Mol Graph Model ; 117: 108315, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36108568

RESUMEN

Antiretroviral drug resistance is a therapeutic obstacle for people with HIV. HIV protease inhibitors darunavir and lopinavir are recommended for resistant infections. We characterized a protease mutant (PR10x) derived from a highly resistant clinical isolate including 10 mutations associated with resistance to lopinavir and darunavir. Compared to the wild-type protease, PR10x exhibits ∼3-fold decrease in catalytic efficiency and Ki values of 2-3 orders of magnitude worse for darunavir, lopinavir, and potent investigational inhibitor GRL-519. Crystal structures of the mutant were solved in a ligand-free form and in complex with GRL-519. The structures show altered interactions in the active site, flap-core interface, hydrophobic core, hinge region, and 80s loop compared to the corresponding wild-type protease structures. The ligand-free crystal structure exhibits a highly curled flap conformation which may amplify drug resistance. Molecular dynamics simulations performed for 1 µs on ligand-free dimers showed extremely large fluctuations in the flaps for PR10x compared to equivalent simulations on PR with a single L76V mutation or wild-type protease. This analysis offers insight about the synergistic effects of mutations in highly resistant variants.


Asunto(s)
Inhibidores de la Proteasa del VIH , Cristalografía por Rayos X , Darunavir/farmacología , Farmacorresistencia Viral/genética , Proteasa del VIH/química , Inhibidores de la Proteasa del VIH/química , Inhibidores de la Proteasa del VIH/farmacología , Humanos , Lopinavir/farmacología , Simulación de Dinámica Molecular , Mutación
11.
Commun Biol ; 5(1): 976, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114420

RESUMEN

The monomeric catalytic domain (residues 1-199) of SARS-CoV-2 main protease (MPro1-199) fused to 25 amino acids of its flanking nsp4 region mediates its autoprocessing at the nsp4-MPro1-199 junction. We report the catalytic activity and the dissociation constants of MPro1-199 and its analogs with the covalent inhibitors GC373 and nirmatrelvir (NMV), and the estimated monomer-dimer equilibrium constants of these complexes. Mass spectrometry indicates the presence of the accumulated adduct of NMV bound to MProWT and MPro1-199 and not of GC373. A room temperature crystal structure reveals a native-like fold of the catalytic domain with an unwound oxyanion loop (E state). In contrast, the structure of a covalent complex of the catalytic domain-GC373 or NMV shows an oxyanion loop conformation (E* state) resembling the full-length mature dimer. These results suggest that the E-E* equilibrium modulates autoprocessing of the main protease when converting from a monomeric polyprotein precursor to the mature dimer.


Asunto(s)
COVID-19 , Aminoácidos , Dominio Catalítico , Proteasas 3C de Coronavirus , Humanos , Péptido Hidrolasas , Poliproteínas , SARS-CoV-2/genética
12.
J Mol Biol ; 434(24): 167876, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36334779

RESUMEN

We recently demonstrated that inhibitor binding reorganizes the oxyanion loop of a monomeric catalytic domain of SARS CoV-2 main protease (MPro) from an unwound (E) to a wound (active, E*) conformation, independent of dimerization. Here we assess the effect of the flanking N-terminal residues, to imitate the MPro precursor prior to its autoprocessing, on conformational equilibria rendering stability and inhibitor binding. Thermal denaturation (Tm) of C145A mutant, unlike H41A, increases by 6.8 °C, relative to wild-type mature dimer. An inactivating H41A mutation to maintain a miniprecursor containing TSAVL[Q or E] of the flanking nsp4 sequence in an intact form [(-6)MProH41A and (-6*)MProH41A, respectively], and its corresponding mature MProH41A were systematically examined. While the H41A mutation exerts negligible effect on Tm and dimer dissociation constant (Kdimer) of MProH41A, relative to the wild type MPro, both miniprecursors show a 4-5 °C decrease in Tm and > 85-fold increase in Kdimer as compared to MProH41A. The Kd for the binding of the covalent inhibitor GC373 to (-6*)MProH41A increases ∼12-fold, relative to MProH41A, concomitant with its dimerization. While the inhibitor-free dimer exhibits a state in transit from E to E* with a conformational asymmetry of the protomers' oxyanion loops and helical domains, inhibitor binding restores the asymmetry to mature-like oxyanion loop conformations (E*) but not of the helical domains. Disorder of the terminal residues 1-2 and 302-306 observed in both structures suggest that N-terminal autoprocessing is tightly coupled to the E-E* equilibrium and stable dimer formation.


Asunto(s)
Proteasas 3C de Coronavirus , Inhibidores de Proteasa de Coronavirus , SARS-CoV-2 , Humanos , Dominio Catalítico , Cristalografía por Rayos X , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/genética , Estabilidad Proteica , Mutación , Inhibidores de Proteasa de Coronavirus/química
13.
Sci Adv ; 8(21): eabo5083, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35622909

RESUMEN

The nonstructural protein 3 (NSP3) macrodomain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Mac1) removes adenosine diphosphate (ADP) ribosylation posttranslational modifications, playing a key role in the immune evasion capabilities of the virus responsible for the coronavirus disease 2019 pandemic. Here, we determined neutron and x-ray crystal structures of the SARS-CoV-2 NSP3 macrodomain using multiple crystal forms, temperatures, and pHs, across the apo and ADP-ribose-bound states. We characterize extensive solvation in the Mac1 active site and visualize how water networks reorganize upon binding of ADP-ribose and non-native ligands, inspiring strategies for displacing waters to increase the potency of Mac1 inhibitors. Determining the precise orientations of active site water molecules and the protonation states of key catalytic site residues by neutron crystallography suggests a catalytic mechanism for coronavirus macrodomains distinct from the substrate-assisted mechanism proposed for human MacroD2. These data provoke a reevaluation of macrodomain catalytic mechanisms and will guide the optimization of Mac1 inhibitors.

14.
Nat Commun ; 13(1): 2268, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477935

RESUMEN

Emerging SARS-CoV-2 variants continue to threaten the effectiveness of COVID-19 vaccines, and small-molecule antivirals can provide an important therapeutic treatment option. The viral main protease (Mpro) is critical for virus replication and thus is considered an attractive drug target. We performed the design and characterization of three covalent hybrid inhibitors BBH-1, BBH-2 and NBH-2 created by splicing components of hepatitis C protease inhibitors boceprevir and narlaprevir, and known SARS-CoV-1 protease inhibitors. A joint X-ray/neutron structure of the Mpro/BBH-1 complex demonstrates that a Cys145 thiolate reaction with the inhibitor's keto-warhead creates a negatively charged oxyanion. Protonation states of the ionizable residues in the Mpro active site adapt to the inhibitor, which appears to be an intrinsic property of Mpro. Structural comparisons of the hybrid inhibitors with PF-07321332 reveal unconventional F···O interactions of PF-07321332 with Mpro which may explain its more favorable enthalpy of binding. BBH-1, BBH-2 and NBH-2 exhibit comparable antiviral properties in vitro relative to PF-07321332, making them good candidates for further design of improved antivirals.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/química , Antivirales/farmacología , Vacunas contra la COVID-19 , Proteasas 3C de Coronavirus , Ciclopropanos , Humanos , Lactamas , Leucina/análogos & derivados , Nitrilos , Prolina/análogos & derivados , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , Sulfonas , Urea
15.
bioRxiv ; 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35169801

RESUMEN

The NSP3 macrodomain of SARS CoV 2 (Mac1) removes ADP-ribosylation post-translational modifications, playing a key role in the immune evasion capabilities of the virus responsible for the COVID-19 pandemic. Here, we determined neutron and X-ray crystal structures of the SARS-CoV-2 NSP3 macrodomain using multiple crystal forms, temperatures, and pHs, across the apo and ADP-ribose-bound states. We characterize extensive solvation in the Mac1 active site, and visualize how water networks reorganize upon binding of ADP-ribose and non-native ligands, inspiring strategies for displacing waters to increase potency of Mac1 inhibitors. Determining the precise orientations of active site water molecules and the protonation states of key catalytic site residues by neutron crystallography suggests a catalytic mechanism for coronavirus macrodomains distinct from the substrate-assisted mechanism proposed for human MacroD2. These data provoke a re-evaluation of macrodomain catalytic mechanisms and will guide the optimization of Mac1 inhibitors.

16.
ACS Pharmacol Transl Sci ; 5(4): 255-265, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35434531

RESUMEN

Inhibition of the SARS-CoV-2 main protease (Mpro) is a major focus of drug discovery efforts against COVID-19. Here we report a hit expansion of non-covalent inhibitors of Mpro. Starting from a recently discovered scaffold (The COVID Moonshot Consortium. Open Science Discovery of Oral Non-Covalent SARS-CoV-2 Main Protease Inhibitor Therapeutics. bioRxiv 2020.10.29.339317) represented by an isoquinoline series, we searched a database of over a billion compounds using a cheminformatics molecular fingerprinting approach. We identified and tested 48 compounds in enzyme inhibition assays, of which 21 exhibited inhibitory activity above 50% at 20 µM. Among these, four compounds with IC50 values around 1 µM were found. Interestingly, despite the large search space, the isoquinolone motif was conserved in each of these four strongest binders. Room-temperature X-ray structures of co-crystallized protein-inhibitor complexes were determined up to 1.9 Å resolution for two of these compounds as well as one of the stronger inhibitors in the original isoquinoline series, revealing essential interactions with the binding site and water molecules. Molecular dynamics simulations and quantum chemical calculations further elucidate the binding interactions as well as electrostatic effects on ligand binding. The results help explain the strength of this new non-covalent scaffold for Mpro inhibition and inform lead optimization efforts for this series, while demonstrating the effectiveness of a high-throughput computational approach to expanding a pharmacophore library.

17.
Nat Commun ; 13(1): 5285, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36075915

RESUMEN

In addition to its essential role in viral polyprotein processing, the SARS-CoV-2 3C-like protease (3CLpro) can cleave human immune signaling proteins, like NF-κB Essential Modulator (NEMO) and deregulate the host immune response. Here, in vitro assays show that SARS-CoV-2 3CLpro cleaves NEMO with fine-tuned efficiency. Analysis of the 2.50 Å resolution crystal structure of 3CLpro C145S bound to NEMO226-234 reveals subsites that tolerate a range of viral and host substrates through main chain hydrogen bonds while also enforcing specificity using side chain hydrogen bonds and hydrophobic contacts. Machine learning- and physics-based computational methods predict that variation in key binding residues of 3CLpro-NEMO helps explain the high fitness of SARS-CoV-2 in humans. We posit that cleavage of NEMO is an important piece of information to be accounted for, in the pathology of COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales/química , Cisteína Endopeptidasas/metabolismo , Humanos , Péptido Hidrolasas , Proteínas
18.
J Med Chem ; 64(8): 4991-5000, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33755450

RESUMEN

The main protease (3CL Mpro) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, is an essential enzyme for viral replication with no human counterpart, making it an attractive drug target. To date, no small-molecule clinical drugs are available that specifically inhibit SARS-CoV-2 Mpro. To aid rational drug design, we determined a neutron structure of Mpro in complex with the α-ketoamide inhibitor telaprevir at near-physiological (22 °C) temperature. We directly observed protonation states in the inhibitor complex and compared them with those in the ligand-free Mpro, revealing modulation of the active-site protonation states upon telaprevir binding. We suggest that binding of other α-ketoamide covalent inhibitors can lead to the same protonation state changes in the Mpro active site. Thus, by studying the protonation state changes induced by inhibitors, we provide crucial insights to help guide rational drug design, allowing precise tailoring of inhibitors to manipulate the electrostatic environment of SARS-CoV-2 Mpro.


Asunto(s)
Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Oligopéptidos/química , Sitios de Unión , Proteasas 3C de Coronavirus/metabolismo , Cristalografía/métodos , Cristalografía por Rayos X , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/metabolismo , Modelos Moleculares , Neutrones , Oligopéptidos/metabolismo , Conformación Proteica , Protones
19.
J Mol Graph Model ; 108: 108005, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34419931

RESUMEN

Drug resistance is a serious problem for controlling the HIV/AIDS pandemic. Current antiviral drugs show several orders of magnitude worse inhibition of highly resistant clinical variant PRS17 of HIV-1 protease compared with wild-type protease. We have analyzed the effects of a common resistance mutation G48V in the flexible flaps of the protease by assessing the revertant PRS17V48G for changes in enzyme kinetics, inhibition, structure, and dynamics. Both PRS17 and the revertant showed about 10-fold poorer catalytic efficiency than wild-type enzyme (0.55 and 0.39 µM-1min-1 compared to 6.3 µM-1min-1). Clinical inhibitors, amprenavir and darunavir, showed 2-fold and 8-fold better inhibition, respectively, of the revertant than of PRS17, although the inhibition constants for PRS17V48G were still 25 to 1,200-fold worse than for wild-type protease. Crystal structures of inhibitor-free revertant and amprenavir complexes with revertant and PRS17 were solved at 1.3-1.5 Å resolution. The amprenavir complexes of PRS17V48G and PRS17 showed no significant differences in the interactions with inhibitor, although changes were observed in the conformation of Phe53 and the interactions of the flaps. The inhibitor-free structure of the revertant showed flaps in an open conformation, however, the flap tips do not have the unusual curled conformation seen in inhibitor-free PRS17. Molecular dynamics simulations were run for 1 µs on the two inhibitor-free mutants and wild-type protease. PRS17 exhibited higher conformational fluctuations than the revertant, while the wild-type protease adopted the closed conformation and showed the least variation. The second half of the simulations captured the transition of the flaps of PRS17 from a closed to a semi-open state, whereas the flaps of PRS17V48G tucked into the active site and the wild-type protease retained the closed conformation. These results suggest that mutation G48V contributes to drug resistance by altering the conformational dynamics of the flaps.


Asunto(s)
Inhibidores de la Proteasa del VIH , Preparaciones Farmacéuticas , Dominio Catalítico , Farmacorresistencia Viral/genética , Proteasa del VIH/genética , Proteasa del VIH/metabolismo , Inhibidores de la Proteasa del VIH/farmacología , Mutación , Conformación Proteica
20.
IUCrJ ; 8(Pt 6): 973-979, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34804549

RESUMEN

SARS-CoV-2 emerged at the end of 2019 to cause an unprecedented pandemic of the deadly respiratory disease COVID-19 that continues to date. The viral main protease (Mpro) is essential for SARS-CoV-2 replication and is therefore an important drug target. Understanding the catalytic mechanism of Mpro, a cysteine protease with a catalytic site comprising the noncanonical Cys145-His41 dyad, can help in guiding drug design. Here, a 2.0 Šresolution room-temperature X-ray crystal structure is reported of a Michaelis-like complex of Mpro harboring a single inactivating mutation C145A bound to the octapeptide Ac-SAVLQSGF-CONH2 corresponding to the nsp4/nsp5 autocleavage site. The peptide substrate is unambiguously defined in subsites S5 to S3' by strong electron density. Superposition of the Michaelis-like complex with the neutron structure of substrate-free Mpro demonstrates that the catalytic site is inherently pre-organized for catalysis prior to substrate binding. Induced fit to the substrate is driven by P1 Gln binding in the predetermined subsite S1 and rearrangement of subsite S2 to accommodate P2 Leu. The Michaelis-like complex structure is ideal for in silico modeling of the SARS-CoV-2 Mpro catalytic mechanism.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda