Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Development ; 148(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34042969

RESUMEN

Cellular metabolism has recently emerged as a key regulator of stem cell behavior. Various studies have suggested that metabolic regulatory mechanisms are conserved in different stem cell niches, suggesting a common level of stem cell regulation across tissues. Although the balance between glycolysis and oxidative phosphorylation has been shown to be distinct in stem cells and their differentiated progeny, much less is known about lipid metabolism in stem cell regulation. In this Review, we focus on how stem cells are affected by two major lipid metabolic pathways: the build-up of lipids, called de novo lipogenesis, and the breakdown of lipids, called fatty acid beta-oxidation. We cover the recent literature on hematopoietic stem cells, intestinal stem cells, neural stem/progenitor cells and cancer stem cells, where these two lipid pathways have been studied in more depth.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Metabolismo de los Lípidos/fisiología , Lipogénesis/fisiología , Lipólisis/fisiología , Células Madre Neoplásicas/metabolismo , Células-Madre Neurales/metabolismo , Animales , Metabolismo Energético/fisiología , Ácidos Grasos/metabolismo , Glucólisis/fisiología , Hematopoyesis/fisiología , Humanos , Neurogénesis/fisiología , Fosforilación Oxidativa
2.
Nature ; 542(7639): 49-54, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28024299

RESUMEN

Lymphatic vessels are lined by lymphatic endothelial cells (LECs), and are critical for health. However, the role of metabolism in lymphatic development has not yet been elucidated. Here we report that in transgenic mouse models, LEC-specific loss of CPT1A, a rate-controlling enzyme in fatty acid ß-oxidation, impairs lymphatic development. LECs use fatty acid ß-oxidation to proliferate and for epigenetic regulation of lymphatic marker expression during LEC differentiation. Mechanistically, the transcription factor PROX1 upregulates CPT1A expression, which increases acetyl coenzyme A production dependent on fatty acid ß-oxidation. Acetyl coenzyme A is used by the histone acetyltransferase p300 to acetylate histones at lymphangiogenic genes. PROX1-p300 interaction facilitates preferential histone acetylation at PROX1-target genes. Through this metabolism-dependent mechanism, PROX1 mediates epigenetic changes that promote lymphangiogenesis. Notably, blockade of CPT1 enzymes inhibits injury-induced lymphangiogenesis, and replenishing acetyl coenzyme A by supplementing acetate rescues this process in vivo.


Asunto(s)
Ácidos Grasos/química , Ácidos Grasos/metabolismo , Linfangiogénesis , Vasos Linfáticos/citología , Vasos Linfáticos/metabolismo , Acetatos/farmacología , Acetilcoenzima A/metabolismo , Acetilación/efectos de los fármacos , Animales , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Epigénesis Genética , Femenino , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Linfangiogénesis/efectos de los fármacos , Linfangiogénesis/genética , Vasos Linfáticos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción/efectos de los fármacos , Biosíntesis de Proteínas , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo , Arterias Umbilicales/citología , Regulación hacia Arriba
3.
Development ; 146(13)2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31227641

RESUMEN

The 2nd SY-Stem Symposium - a symposium for 'the next generation of stem cell researchers' - was held on the 21-23 March 2019 at the Vienna BioCenter in Austria. After the great success of the initial SY-Stem meeting in 2018, this year's event again focused on the work of young scientists. Here, we summarize the impressive amount of new research covering stem cell-related fields that was discussed at the meeting.


Asunto(s)
Investigación Biomédica/tendencias , Investigación con Células Madre , Células Madre/citología , Biología de Sistemas , Animales , Austria , Investigación Biomédica/organización & administración , Congresos como Asunto/organización & administración , Congresos como Asunto/normas , Humanos , Medicina Regenerativa/organización & administración , Medicina Regenerativa/tendencias , Biología de Sistemas/métodos , Biología de Sistemas/tendencias
4.
Nature ; 493(7431): 226-30, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23201681

RESUMEN

Mechanisms controlling the proliferative activity of neural stem and progenitor cells (NSPCs) have a pivotal role to ensure life-long neurogenesis in the mammalian brain. How metabolic programs are coupled with NSPC activity remains unknown. Here we show that fatty acid synthase (Fasn), the key enzyme of de novo lipogenesis, is highly active in adult NSPCs and that conditional deletion of Fasn in mouse NSPCs impairs adult neurogenesis. The rate of de novo lipid synthesis and subsequent proliferation of NSPCs is regulated by Spot14, a gene previously implicated in lipid metabolism, that we found to be selectively expressed in low proliferating adult NSPCs. Spot14 reduces the availability of malonyl-CoA, which is an essential substrate for Fasn to fuel lipogenesis. Thus, we identify here a functional coupling between the regulation of lipid metabolism and adult NSPC proliferation.


Asunto(s)
Células Madre Adultas/metabolismo , Ácido Graso Sintasas/metabolismo , Lipogénesis , Células-Madre Neurales/metabolismo , Células Madre Adultas/citología , Animales , Proliferación Celular , Giro Dentado/metabolismo , Ácido Graso Sintasas/deficiencia , Ácido Graso Sintasas/genética , Perfilación de la Expresión Génica , Hipocampo/citología , Hipocampo/metabolismo , Malonil Coenzima A/metabolismo , Ratones , Ratones Transgénicos , Células-Madre Neurales/citología , Neurogénesis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Development ; 140(2): 459-70, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23193167

RESUMEN

Stem cell self-renewal, commitment and reprogramming rely on a poorly understood coordination of cell cycle progression and execution of cell fate choices. Using existing experimental paradigms, it has not been possible to probe this relationship systematically in live stem cells in vitro or in vivo. Alterations in stem cell cycle kinetics probably occur long before changes in phenotypic markers are apparent and could be used as predictive parameters to reveal changes in stem cell fate. To explore this intriguing concept, we developed a single-cell tracking approach that enables automatic detection of cell cycle phases in live (stem) cells expressing fluorescent ubiquitylation-based cell-cycle indicator (FUCCI) probes. Using this tool, we have identified distinctive changes in lengths and fluorescence intensities of G1 (red fluorescence) and S/G2-M (green) that are associated with self-renewal and differentiation of single murine neural stem/progenitor cells (NSCs) and embryonic stem cells (ESCs). We further exploited these distinctive features using fluorescence-activated cell sorting to select for desired stem cell fates in two challenging cell culture settings. First, as G1 length was found to nearly double during NSC differentiation, resulting in progressively increasing red fluorescence intensity, we successfully purified stem cells from heterogeneous cell populations by their lower fluorescence. Second, as ESCs are almost exclusively marked by the green (S/G2-M) FUCCI probe due to their very short G1, we substantially augmented the proportion of reprogramming cells by sorting green cells early on during reprogramming from a NSC to an induced pluripotent stem cell state. Taken together, our studies begin to shed light on the crucial relationship between cell cycle progression and fate choice, and we are convinced that the presented approach can be exploited to predict and manipulate cell fate in a wealth of other mammalian cell systems.


Asunto(s)
Linaje de la Célula , Células Madre Embrionarias/citología , Células Madre/citología , Animales , Ciclo Celular , Diferenciación Celular , División Celular , Separación Celular , Cruzamientos Genéticos , Biología Evolutiva/métodos , Citometría de Flujo , Heterocigoto , Cinética , Ratones , Ratones Endogámicos C57BL , Microscopía/métodos , Neuronas/metabolismo
7.
Proc Natl Acad Sci U S A ; 108(14): 5807-12, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21436036

RESUMEN

Neural stem cells (NSCs) generate new granule cells throughout life in the mammalian hippocampus. Canonical Wnt signaling regulates the differentiation of NSCs towards the neuronal lineage. Here we identified the prospero-related homeodomain transcription factor Prox1 as a target of ß-catenin-TCF/LEF signaling in vitro and in vivo. Prox1 overexpression enhanced neuronal differentiation whereas shRNA-mediated knockdown of Prox1 impaired the generation of neurons in vitro and within the hippocampal niche. In contrast, Prox1 was not required for survival of adult-generated granule cells after they had matured, suggesting a role for Prox1 in initial granule cell differentiation but not in the maintenance of mature granule cells. The data presented here characterize a molecular pathway from Wnt signaling to a transcriptional target leading to granule cell differentiation within the adult brain and identify a stage-specific function for Prox1 in the process of adult neurogenesis.


Asunto(s)
Diferenciación Celular/fisiología , Hipocampo/crecimiento & desarrollo , Proteínas de Homeodominio/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/metabolismo , Proteínas Wnt/metabolismo , Animales , Secuencia de Bases , Western Blotting , Células Cultivadas , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , Hipocampo/citología , Proteínas de Homeodominio/genética , Inmunohistoquímica , Hibridación in Situ , Luciferasas , Ratones , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Supresoras de Tumor/genética
9.
Nat Commun ; 15(1): 5489, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942786

RESUMEN

Lipid droplets (LDs) are dynamic lipid storage organelles. They are tightly linked to metabolism and can exert protective functions, making them important players in health and disease. Most LD studies in vivo rely on staining methods, providing only a snapshot. We therefore developed a LD-reporter mouse by labelling the endogenous LD coat protein perilipin 2 (PLIN2) with tdTomato, enabling staining-free fluorescent LD visualisation in living and fixed tissues and cells. Here we validate this model under standard and high-fat diet conditions and demonstrate that LDs are highly abundant in various cell types in the healthy brain, including neurons, astrocytes, ependymal cells, neural stem/progenitor cells and microglia. Furthermore, we also show that LDs are abundant during brain development and can be visualized using live imaging of embryonic slices. Taken together, our tdTom-Plin2 mouse serves as a novel tool to study LDs and their dynamics under both physiological and diseased conditions in all tissues expressing Plin2.


Asunto(s)
Encéfalo , Gotas Lipídicas , Perilipina-2 , Animales , Perilipina-2/metabolismo , Perilipina-2/genética , Gotas Lipídicas/metabolismo , Encéfalo/metabolismo , Ratones , Neuronas/metabolismo , Técnicas de Sustitución del Gen , Ratones Transgénicos , Femenino , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Masculino , Astrocitos/metabolismo , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Microglía/metabolismo
10.
J Neurosci ; 32(10): 3376-87, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22399759

RESUMEN

Neural stem cells (NSCs) generate neurons throughout life in the hippocampal dentate gyrus (DG). How gene expression signatures differ among NSCs and immature neurons remains largely unknown. We isolated NSCs and their progeny in the adult DG using transgenic mice expressing a GFP reporter under the control of the Sox2 promoter (labeling NSCs) and transgenic mice expressing a DsRed reporter under the control of the doublecortin (DCX) promoter (labeling immature neurons). Transcriptome analyses revealed distinct gene expression profiles between NSCs and immature neurons. Among the genes that were expressed at significantly higher levels in DG NSCs than in immature neurons was the growth factor insulin-like growth factor 2 (IGF2). We show that IGF2 selectively controls proliferation of DG NSCs in vitro and in vivo through AKT-dependent signaling. Thus, by gene expression profiling of NSCs and their progeny, we have identified IGF2 as a novel regulator of adult neurogenesis.


Asunto(s)
Células Madre Adultas/fisiología , Diferenciación Celular/genética , Perfilación de la Expresión Génica/métodos , Hipocampo/fisiología , Factor II del Crecimiento Similar a la Insulina/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/genética , Células Madre Adultas/citología , Animales , Células Cultivadas , Proteína Doblecortina , Femenino , Hipocampo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células-Madre Neurales/citología , Neuronas/citología , Neuronas/fisiología , Transcriptoma/genética
11.
Sci Adv ; 9(9): eadd5220, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36857455

RESUMEN

Cellular metabolism is important for adult neural stem/progenitor cell (NSPC) behavior. However, its role in the transition from quiescence to proliferation is not fully understood. We here show that the mitochondrial pyruvate carrier (MPC) plays a crucial and unexpected part in this process. MPC transports pyruvate into mitochondria, linking cytosolic glycolysis to mitochondrial tricarboxylic acid cycle and oxidative phosphorylation. Despite its metabolic key function, the role of MPC in NSPCs has not been addressed. We show that quiescent NSPCs have an active mitochondrial metabolism and express high levels of MPC. Pharmacological MPC inhibition increases aspartate and triggers NSPC activation. Furthermore, genetic Mpc1 ablation in vitro and in vivo also activates NSPCs, which differentiate into mature neurons, leading to overall increased hippocampal neurogenesis in adult and aged mice. These findings highlight the importance of metabolism for NSPC regulation and identify an important pathway through which mitochondrial pyruvate import controls NSPC quiescence and activation.


Asunto(s)
Células-Madre Neurales , Neurogénesis , Animales , Ratones , Neuronas , Transporte Biológico , Mitocondrias , Transportadores de Ácidos Monocarboxílicos
12.
Trends Endocrinol Metab ; 34(8): 446-461, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380501

RESUMEN

Metabolism has emerged as a key regulator of stem cell behavior. Mitochondria are crucial metabolic organelles that are important for differentiated cells, yet considered less so for stem cells. However, recent studies have shown that mitochondria influence stem cell maintenance and fate decisions, inviting a revised look at this topic. In this review, we cover the current literature addressing the role of mitochondrial metabolism in mouse and human neural stem cells (NSCs) in the embryonic and adult brain. We summarize how mitochondria are implicated in fate regulation and how substrate oxidation affects NSC quiescence. We further explore single-cell RNA sequencing (scRNA-seq) data for metabolic signatures of adult NSCs, highlight emerging technologies reporting on metabolic signatures, and discuss mitochondrial metabolism in other stem cells.


Asunto(s)
Células Madre Adultas , Células-Madre Neurales , Humanos , Ratones , Animales , Células-Madre Neurales/metabolismo , Diferenciación Celular/fisiología , Mitocondrias/metabolismo , Células Madre Adultas/metabolismo , Oxidación-Reducción
13.
Immunometabolism ; 3(4): e210034, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34754515

RESUMEN

Research led by Katrin Andreasson suggests that fixing age-induced metabolic defects in myeloid cells would suffice to reverse cognitive impairment and to restore synaptic plasticity to the level of young subjects, at least in mice. This opens up the possibility to develop rejuvenating strategies by targeting immune dysfunction.

14.
Nat Commun ; 12(1): 7362, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34934077

RESUMEN

Neural stem/progenitor cells (NSPCs) generate new neurons throughout adulthood. However, the underlying regulatory processes are still not fully understood. Lipid metabolism plays an important role in regulating NSPC activity: build-up of lipids is crucial for NSPC proliferation, whereas break-down of lipids has been shown to regulate NSPC quiescence. Despite their central role for cellular lipid metabolism, the role of lipid droplets (LDs), the lipid storing organelles, in NSPCs remains underexplored. Here we show that LDs are highly abundant in adult mouse NSPCs, and that LD accumulation is significantly altered upon fate changes such as quiescence and differentiation. NSPC proliferation is influenced by the number of LDs, inhibition of LD build-up, breakdown or usage, and the asymmetric inheritance of LDs during mitosis. Furthermore, high LD-containing NSPCs have increased metabolic activity and capacity, but do not suffer from increased oxidative damage. Together, these data indicate an instructive role for LDs in driving NSPC behaviour.


Asunto(s)
Gotas Lipídicas/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Diferenciación Celular , Proliferación Celular , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Patrón de Herencia/genética , Peroxidación de Lípido , Masculino , Ratones Endogámicos C57BL , Mitosis , Neuronas/citología , Neuronas/metabolismo , Perilipina-2/metabolismo , Fosfolípidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo
15.
Neurobiol Dis ; 40(1): 284-92, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20600914

RESUMEN

Deposition of beta-amyloid along cerebral vessels is found in most patients suffering from Alzheimer's disease. The effects of cerebral amyloid angiopathy (CAA) on the function of cerebral blood vessels were analyzed applying cerebral blood volume (CBV)-based fMRI to transgenic arcA beta mice. In a cortical brain region of interest (ROI), displaying high CAA, arcA beta mice older than 16 months showed reduced response to the vasodilatory substance acetazolamide compared to age-matched wild-type animals, both with regard to rate (vascular reactivity) and extent of vasodilation (maximal vasodilation). In a subcortical ROI, displaying little CAA, no genotype-specific decrease was observed, but maximal vasodilation decreased with age in arcA beta and wild-types. These findings indicate that vascular beta-amyloid deposits reduce the capacity of cerebral blood vessels to dilate upon demand, supporting the hypothesis that vascular beta-amyloid contributes to hypoperfusion and neurological deficits observed in AD and CAA. High diagnostic accuracy of the combined readouts in detecting vascular dysfunction in arcA beta mice was found.


Asunto(s)
Acetazolamida , Envejecimiento/genética , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Angiopatía Amiloide Cerebral/genética , Arterias Cerebrales/metabolismo , Ratones Transgénicos , Vasodilatadores , Envejecimiento/efectos de los fármacos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/biosíntesis , Animales , Angiopatía Amiloide Cerebral/diagnóstico , Angiopatía Amiloide Cerebral/metabolismo , Arterias Cerebrales/efectos de los fármacos , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/efectos de los fármacos , Circulación Cerebrovascular/efectos de los fármacos , Circulación Cerebrovascular/genética , Modelos Animales de Enfermedad , Marcadores Genéticos , Humanos , Ratones , Valor Predictivo de las Pruebas
16.
Sci Rep ; 10(1): 14642, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32887893

RESUMEN

The green fluorescent protein (GFP) is a powerful reporter protein that allows labeling of specific proteins or entire cells. However, as GFP is a small soluble protein, it easily crosses membranes if cell integrity is disrupted, and GFP signal is lost or diffuse if the specimen is not fixed beforehand. While pre-fixation is often feasible for histological analyses, many molecular biology procedures and new imaging techniques, such as imaging mass spectrometry, require unfixed specimens. To be able to use GFP labeling in tissues prepared for such applications, we have tested various protocols to minimize the loss of GFP signal. Here we show that, in cryocut sections of snap-frozen brain tissue from two GFP reporter mouse lines, leaking of the GFP signal is prevented by omitting the commonly performed drying of the cryosections, and by direct post-fixation with 4% paraformaldehyde pre-warmed at 30-37 °C. Although the GFP staining does not reach the same quality as obtained with pre-fixed tissue, GFP localization within the cells that express it is preserved with this method. This protocol can thus be used to identify GFP positive cells on sections originating from unfixed, cryosectioned tissue.


Asunto(s)
Criopreservación/métodos , Giro Dentado/metabolismo , Secciones por Congelación/métodos , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/metabolismo , Células-Madre Neurales/metabolismo , Fijación del Tejido/métodos , Animales , Giro Dentado/patología , Formaldehído/química , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Inmunohistoquímica/métodos , Ratones , Ratones Transgénicos , Nestina/genética , Polímeros/química , Regiones Promotoras Genéticas , Coloración y Etiquetado/métodos
17.
Stem Cell Reports ; 15(3): 566-576, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32857979

RESUMEN

Fatty acid ß-oxidation (FAO), the breakdown of lipids, is a metabolic pathway used by various stem cells. FAO levels are generally high during quiescence and downregulated with proliferation. The endogenous metabolite malonyl-CoA modulates lipid metabolism as a reversible FAO inhibitor and as a substrate for de novo lipogenesis. Here we assessed whether malonyl-CoA can be exploited to steer the behavior of hematopoietic stem/progenitor cells (HSPCs), quiescent stem cells of clinical relevance. Treatment of mouse HSPCs in vitro with malonyl-CoA increases HSPC numbers compared with nontreated controls and ameliorates blood reconstitution capacity when transplanted in vivo, mainly through enhanced lymphoid reconstitution. Similarly, human HSPC numbers also increase upon malonyl-CoA treatment in vitro. These data corroborate that lipid metabolism can be targeted to direct cell fate and stem cell proliferation. Physiological modulation of metabolic pathways, rather than genetic or pharmacological inhibition, provides unique perspectives for stem cell manipulations in health and disease.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Metabolismo de los Lípidos , Linfocitos/citología , Metaboloma , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Proliferación Celular/genética , Células Cultivadas , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Metabolismo de los Lípidos/genética , Linfocitos/metabolismo , Malonil Coenzima A/metabolismo , Metaboloma/genética , Ratones Endogámicos C57BL , Oxidación-Reducción
18.
Brain ; 131(Pt 1): 109-19, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18056160

RESUMEN

Alzheimer's disease has long been known to involve cholinergic deficits, but the linkage between cholinergic gene expression and the Alzheimer's disease amyloid pathology has remained incompletely understood. One known link involves synaptic acetylcholinesterase (AChE-S), shown to accelerate amyloid fibrils formation. Here, we report that the 'Readthrough' AChE-R splice variant, which differs from AChE-S in its 26 C-terminal residues, inversely exerts neuroprotective effects from amyloid beta (Abeta) induced toxicity. In vitro, highly purified AChE-R dose-dependently suppressed the formation of insoluble Abeta oligomers and fibrils and abolished Abeta toxicity to cultured cells, competing with the prevalent AChE-S protein which facilitates these processes. In vivo, double transgenic APPsw/AChE-R mice showed lower plaque burden, fewer reactive astrocytes and less dendritic damage than single APPsw mice, inverse to reported acceleration of these features in double APPsw/AChE-S mice. In hippocampi from Alzheimer's disease patients (n = 10), dentate gyrus neurons showed significantly elevated AChE-R mRNA and reduced AChE-S mRNA. However, immunoblot analyses revealed drastic reductions in the levels of intact AChE-R protein, suggesting that its selective loss in the Alzheimer's disease brain exacerbates the Abeta-induced damages and revealing a previously unforeseen linkage between cholinergic and amyloidogenic events.


Asunto(s)
Acetilcolinesterasa/farmacología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/biosíntesis , Acetilcolinesterasa/genética , Acetilcolinesterasa/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Empalme Alternativo , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/efectos de los fármacos , Animales , Astrocitos/patología , Encéfalo/metabolismo , Encéfalo/patología , Dendritas/patología , Relación Dosis-Respuesta a Droga , Femenino , Regulación Enzimológica de la Expresión Génica , Hipocampo/enzimología , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , ARN Mensajero/genética , Proteínas Recombinantes/farmacología , Células Tumorales Cultivadas
19.
Neurodegener Dis ; 6(5-6): 270-80, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20145420

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is characterized by brain accumulation of the amyloid-beta peptide (Abeta) that triggers a cascade of biochemical and cellular alterations resulting in the clinical phenotype of the disease. While numerous experiments addressed Abeta toxicity, the mechanisms are still not fully understood. The receptor for advanced glycation end products (RAGE) binds Abeta and was suggested to be involved in the pathological processes of AD. OBJECTIVE: Our purpose was to assess the effect of RAGE deletion on Abeta-related pathology. METHODS: We crossed RAGE knockout (RAGE(-/-)) mice with transgenic mice harboring both the Swedish and Arctic Abeta precursor protein mutations (arcAbeta mice). We assessed Abeta levels, Abeta brain deposition, Abeta-degrading enzyme activities, Abeta precursor protein expression and processing, number and morphology of microglia as well as cognitive performance of 6- and 12-month-old RAGE(-/-)/arcAbeta, RAGE(-/-), arcAbeta and wild-type mice. RESULTS: RAGE(-/-)/arcAbeta mice had significantly lower levels of SDS- and formic-acid-extracted Abeta in the cortex and hippocampus, with concomitantly increased activity of insulin-degrading enzyme at the age of 6 months. However, RAGE deletion could neither prevent the decline in cognitive performance nor the age-related cerebral accumulation of Abeta peptide. Furthermore, histological analysis revealed no difference in the microglia-occupied brain areas or microglial morphologies between RAGE(-/-)/arcAbeta and arcAbeta mice. CONCLUSIONS: Together, our results indicate that while the absence of RAGE was associated with increased insulin-degrading enzyme activity in the brain, it was not sufficient to prevent or ameliorate cognitive deterioration, Abeta accumulation and microglial activation in the arcAbeta mouse model of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Receptores Inmunológicos/metabolismo , Factores de Edad , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática/métodos , Regulación de la Expresión Génica/genética , Humanos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Fragmentos de Péptidos/metabolismo , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/genética , Estadística como Asunto
20.
Cell Stem Cell ; 25(6): 729-731, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31809733

RESUMEN

Metabolism has emerged as a key player for stem cell behavior; however, the role of metabolism in the microenvironment remains poorly understood. In this issue of Cell Stem Cell, Wang et al. (2019) show that brain endothelial cells directly affect adult neural stem cells and maintain a healthy metabolic environment by regulating lactate levels.


Asunto(s)
Células Endoteliales , Ácido Láctico , Adulto , Encéfalo , Hipocampo , Homeostasis , Humanos , Neurogénesis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda