Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Virol ; 98(6): e0177823, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38785423

RESUMEN

Obesity is well established as a risk factor for many noncommunicable diseases; however, its consequences for infectious disease are poorly understood. Here, we investigated the impact of host obesity on influenza A virus (IAV) genetic variation using a diet-induced obesity ferret model and the A/Hong Kong/1073/1999 (H9N2) strain. Using a co-caging study design, we investigated the maintenance, generation, and transmission of intrahost IAV genetic variation by sequencing viral genomic RNA obtained from nasal wash samples over multiple days of infection. We found evidence for an enhanced role of positive selection acting on de novo mutations in obese hosts that led to nonsynonymous changes that rose to high frequency. In addition, we identified numerous cases of mutations throughout the genome that were specific to obese hosts and that were preserved during transmission between hosts. Despite detection of obese-specific variants, the overall viral genetic diversity did not differ significantly between obese and lean hosts. This is likely due to the high supply rate of de novo variation and common evolutionary adaptations to the ferret host regardless of obesity status, which we show are mediated by variation in the hemagglutinin and polymerase genes (PB2 and PB1). We also identified defective viral genomes (DVGs) that were found uniquely in either obese or lean hosts, but the overall DVG diversity and dynamics did not differ between the two groups. Our study suggests that obesity may result in a unique selective environment impacting intrahost IAV evolution, highlighting the need for additional genetic and functional studies to confirm these effects.IMPORTANCEObesity is a chronic health condition characterized by excess adiposity leading to a systemic increase in inflammation and dysregulation of metabolic hormones and immune cell populations. Influenza A virus (IAV) is a highly infectious pathogen responsible for seasonal and pandemic influenza. Host risk factors, including compromised immunity and pre-existing health conditions, can contribute to increased infection susceptibility and disease severity. During viral replication in a host, the negative-sense single-stranded RNA genome of IAV accumulates genetic diversity that may have important consequences for viral evolution and transmission. Our study provides the first insight into the consequences of host obesity on viral genetic diversity and adaptation, suggesting that host factors associated with obesity alter the selective environment experienced by a viral population, thereby impacting the spectrum of genetic variation.


Asunto(s)
Hurones , Variación Genética , Genoma Viral , Virus de la Influenza A , Obesidad , Infecciones por Orthomyxoviridae , Animales , Humanos , Masculino , Modelos Animales de Enfermedad , Evolución Molecular , Hurones/virología , Variación Genética/genética , Genoma Viral/genética , Interacciones Microbiota-Huesped , Virus de la Influenza A/genética , Mutación , Obesidad/virología , Infecciones por Orthomyxoviridae/virología , ARN Viral/genética , Delgadez/virología
2.
bioRxiv ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37503024

RESUMEN

Obesity is a chronic health condition characterized by excess adiposity leading to a systemic increase in inflammation and dysregulation of metabolic hormones and immune cell populations. Obesity is well established as a risk factor for many noncommunicable diseases; however, its consequences for infectious disease are poorly understood. Influenza A virus (IAV) is a highly infectious pathogen responsible for seasonal and pandemic influenza. Host risk factors, including compromised immunity and pre-existing health conditions, can contribute to increased infection susceptibility and disease severity. During viral replication in a host, the negative sense single stranded RNA genome of IAV accumulates genetic diversity that may have important consequences for viral evolution and transmission. Here, we investigated the impact of host obesity on IAV genetic variation using a diet induced obesity ferret model. We infected obese and lean male ferrets with the A/Hong Kong/1073/1999 (H9N2) IAV strain. Using a co-caging study design, we investigated the maintenance, generation, and transmission of intrahost IAV genetic variation by sequencing viral genomic RNA obtained from nasal wash samples over multiple days of infection. We found evidence for an enhanced role of positive selection acting on de novo mutations in obese hosts that led to nonsynonymous changes that rose to high frequency. In addition, we identified numerous cases of recurrent low-frequency mutations throughout the genome that were specific to obese hosts. Despite these obese-specific variants, overall viral genetic diversity did not differ significantly between obese and lean hosts. This is likely due to the high supply rate of de novo variation and common evolutionary adaptations to the ferret host regardless of obesity status, which we show are mediated by variation in the hemagglutinin (HA) and polymerase genes (PB2 and PB1). As with single nucleotide variants, we identified a class of defective viral genomes (DVGs) that were found uniquely in either obese or lean hosts, but overall DVG diversity and dynamics did not differ between the two groups. Our study provides the first insight into the consequences of host obesity on viral genetic diversity and adaptation, suggesting that host factors associated with obesity alter the selective environment experienced by a viral population, thereby impacting the spectrum of genetic variation.

3.
Commun Biol ; 4(1): 1086, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526645

Asunto(s)
Virus , Membrana Celular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda